Automated Rule-Based Decision Systems in Forensic Toxicology using Expert Knowledge: Basic Principles and Practical Applications

This paper presents the basic principles and practical benefits of the application of expert systems (ES) and artificial intelligence (AI) to problem solving in forensic toxicology. We acknowledge the complexity and elegance of the theoretical substance and program algorithms of existing work in the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of analytical toxicology 1990-09, Vol.14 (5), p.280-284
Hauptverfasser: Cechner, Ronald L., Sutheimer, Craig A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 284
container_issue 5
container_start_page 280
container_title Journal of analytical toxicology
container_volume 14
creator Cechner, Ronald L.
Sutheimer, Craig A.
description This paper presents the basic principles and practical benefits of the application of expert systems (ES) and artificial intelligence (AI) to problem solving in forensic toxicology. We acknowledge the complexity and elegance of the theoretical substance and program algorithms of existing work in these disciplines, while simultaneously observing that many presentations of this material cloak the essential facts and concepts in unnecessary jargon and hyperbole. We attempt to remove the cloak without misrepresenting or oversimplifying the underlying structures. We first present a summary of the history, basic functions, technical fundamentals, and typical applications in three major categories of established ES/AI systems. We then assess the status of ES/AI in the forensic toxicology laboratory (FTL) with emphasis on potential applications. We conclude with an analysis of experiences with ESs in our laboratory where we have used an integrated expert system to reduce laboratory errors, detect internal inconsistencies in data, discover new substance abuse subpopulations, and reduce the frequency of sample reprocessing. We have minimized specimen processing time and instrument wear while maximizing technician efficiency and thus performing more tests for the same or reduced costs.
doi_str_mv 10.1093/jat/14.5.280
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_15805454</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1093473008</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-32f6c452b97a9af716672cfdb2c37afe701f89db2b8202aaa55e7a2a8bd4f03e3</originalsourceid><addsrcrecordid>eNp9kc1vEzEQxS0EKmnhxhXJFxAHNvW3d3sLpW0QkUClSBEXa-L1Ri6768XeVZMbfzoWicqN08zo_fRGeg-hV5TMKan4-T2M51TM5ZyV5Ama0UrIggnCn6IZoUIVQivyHJ2mdE8IVaXiJ-iEMcWJojP0ezGNoYPR1fh2al3xAVJePzrrkw89_rZPo-sS9j2-DtH1yVt8F3behjZs93hKvt_iq93g4og_9-GhdfXWXeDsksGv0ffWD61LGPo6n2BHb6HFi2Fo8zLmD-kFetZAm9zL4zxD36-v7i6XxerLzafLxaqwgpZjwVmjrJBsU2mooNFUKc1sU2-Y5Roapwltyiqfm5IRBgBSOg0Myk0tGsIdP0NvD75DDL8ml0bT-WRd20LvwpQMlSWRQooMvvs_mDMXmhNSZvT9AbUxpBRdY4boO4j7DP3lTO7GUGGkyd1k_PXRedp0rn6Ej2Vk_c1Rh5RjaiLk-NI_zyqXKrXKXHHgfC5n96hD_GmU5lqa5fqHWd-uSrJcc3PD_wAERagl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1093473008</pqid></control><display><type>article</type><title>Automated Rule-Based Decision Systems in Forensic Toxicology using Expert Knowledge: Basic Principles and Practical Applications</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><source>Oxford University Press Journals Digital Archive Legacy</source><creator>Cechner, Ronald L. ; Sutheimer, Craig A.</creator><creatorcontrib>Cechner, Ronald L. ; Sutheimer, Craig A.</creatorcontrib><description>This paper presents the basic principles and practical benefits of the application of expert systems (ES) and artificial intelligence (AI) to problem solving in forensic toxicology. We acknowledge the complexity and elegance of the theoretical substance and program algorithms of existing work in these disciplines, while simultaneously observing that many presentations of this material cloak the essential facts and concepts in unnecessary jargon and hyperbole. We attempt to remove the cloak without misrepresenting or oversimplifying the underlying structures. We first present a summary of the history, basic functions, technical fundamentals, and typical applications in three major categories of established ES/AI systems. We then assess the status of ES/AI in the forensic toxicology laboratory (FTL) with emphasis on potential applications. We conclude with an analysis of experiences with ESs in our laboratory where we have used an integrated expert system to reduce laboratory errors, detect internal inconsistencies in data, discover new substance abuse subpopulations, and reduce the frequency of sample reprocessing. We have minimized specimen processing time and instrument wear while maximizing technician efficiency and thus performing more tests for the same or reduced costs.</description><identifier>ISSN: 0146-4760</identifier><identifier>EISSN: 1945-2403</identifier><identifier>DOI: 10.1093/jat/14.5.280</identifier><identifier>PMID: 2263061</identifier><identifier>CODEN: JATOD3</identifier><language>eng</language><publisher>Niles, IL: Oxford University Press</publisher><subject>Algorithms ; Artificial Intelligence ; Biological and medical sciences ; Data processing ; Decision Making ; Drug abuse ; Expert Systems ; Forensic Medicine ; Forensic science ; General aspects. Methods ; Medical sciences ; Problem solving ; Subpopulations ; Terminology ; Toxicology</subject><ispartof>Journal of analytical toxicology, 1990-09, Vol.14 (5), p.280-284</ispartof><rights>1991 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-32f6c452b97a9af716672cfdb2c37afe701f89db2b8202aaa55e7a2a8bd4f03e3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19403576$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/2263061$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cechner, Ronald L.</creatorcontrib><creatorcontrib>Sutheimer, Craig A.</creatorcontrib><title>Automated Rule-Based Decision Systems in Forensic Toxicology using Expert Knowledge: Basic Principles and Practical Applications</title><title>Journal of analytical toxicology</title><addtitle>Journal of Analytical Toxicology</addtitle><description>This paper presents the basic principles and practical benefits of the application of expert systems (ES) and artificial intelligence (AI) to problem solving in forensic toxicology. We acknowledge the complexity and elegance of the theoretical substance and program algorithms of existing work in these disciplines, while simultaneously observing that many presentations of this material cloak the essential facts and concepts in unnecessary jargon and hyperbole. We attempt to remove the cloak without misrepresenting or oversimplifying the underlying structures. We first present a summary of the history, basic functions, technical fundamentals, and typical applications in three major categories of established ES/AI systems. We then assess the status of ES/AI in the forensic toxicology laboratory (FTL) with emphasis on potential applications. We conclude with an analysis of experiences with ESs in our laboratory where we have used an integrated expert system to reduce laboratory errors, detect internal inconsistencies in data, discover new substance abuse subpopulations, and reduce the frequency of sample reprocessing. We have minimized specimen processing time and instrument wear while maximizing technician efficiency and thus performing more tests for the same or reduced costs.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Biological and medical sciences</subject><subject>Data processing</subject><subject>Decision Making</subject><subject>Drug abuse</subject><subject>Expert Systems</subject><subject>Forensic Medicine</subject><subject>Forensic science</subject><subject>General aspects. Methods</subject><subject>Medical sciences</subject><subject>Problem solving</subject><subject>Subpopulations</subject><subject>Terminology</subject><subject>Toxicology</subject><issn>0146-4760</issn><issn>1945-2403</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1990</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc1vEzEQxS0EKmnhxhXJFxAHNvW3d3sLpW0QkUClSBEXa-L1Ri6768XeVZMbfzoWicqN08zo_fRGeg-hV5TMKan4-T2M51TM5ZyV5Ama0UrIggnCn6IZoUIVQivyHJ2mdE8IVaXiJ-iEMcWJojP0ezGNoYPR1fh2al3xAVJePzrrkw89_rZPo-sS9j2-DtH1yVt8F3behjZs93hKvt_iq93g4og_9-GhdfXWXeDsksGv0ffWD61LGPo6n2BHb6HFi2Fo8zLmD-kFetZAm9zL4zxD36-v7i6XxerLzafLxaqwgpZjwVmjrJBsU2mooNFUKc1sU2-Y5Roapwltyiqfm5IRBgBSOg0Myk0tGsIdP0NvD75DDL8ml0bT-WRd20LvwpQMlSWRQooMvvs_mDMXmhNSZvT9AbUxpBRdY4boO4j7DP3lTO7GUGGkyd1k_PXRedp0rn6Ej2Vk_c1Rh5RjaiLk-NI_zyqXKrXKXHHgfC5n96hD_GmU5lqa5fqHWd-uSrJcc3PD_wAERagl</recordid><startdate>19900901</startdate><enddate>19900901</enddate><creator>Cechner, Ronald L.</creator><creator>Sutheimer, Craig A.</creator><general>Oxford University Press</general><general>Preston</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U7</scope><scope>C1K</scope></search><sort><creationdate>19900901</creationdate><title>Automated Rule-Based Decision Systems in Forensic Toxicology using Expert Knowledge: Basic Principles and Practical Applications</title><author>Cechner, Ronald L. ; Sutheimer, Craig A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-32f6c452b97a9af716672cfdb2c37afe701f89db2b8202aaa55e7a2a8bd4f03e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1990</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Biological and medical sciences</topic><topic>Data processing</topic><topic>Decision Making</topic><topic>Drug abuse</topic><topic>Expert Systems</topic><topic>Forensic Medicine</topic><topic>Forensic science</topic><topic>General aspects. Methods</topic><topic>Medical sciences</topic><topic>Problem solving</topic><topic>Subpopulations</topic><topic>Terminology</topic><topic>Toxicology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cechner, Ronald L.</creatorcontrib><creatorcontrib>Sutheimer, Craig A.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Journal of analytical toxicology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cechner, Ronald L.</au><au>Sutheimer, Craig A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated Rule-Based Decision Systems in Forensic Toxicology using Expert Knowledge: Basic Principles and Practical Applications</atitle><jtitle>Journal of analytical toxicology</jtitle><addtitle>Journal of Analytical Toxicology</addtitle><date>1990-09-01</date><risdate>1990</risdate><volume>14</volume><issue>5</issue><spage>280</spage><epage>284</epage><pages>280-284</pages><issn>0146-4760</issn><eissn>1945-2403</eissn><coden>JATOD3</coden><abstract>This paper presents the basic principles and practical benefits of the application of expert systems (ES) and artificial intelligence (AI) to problem solving in forensic toxicology. We acknowledge the complexity and elegance of the theoretical substance and program algorithms of existing work in these disciplines, while simultaneously observing that many presentations of this material cloak the essential facts and concepts in unnecessary jargon and hyperbole. We attempt to remove the cloak without misrepresenting or oversimplifying the underlying structures. We first present a summary of the history, basic functions, technical fundamentals, and typical applications in three major categories of established ES/AI systems. We then assess the status of ES/AI in the forensic toxicology laboratory (FTL) with emphasis on potential applications. We conclude with an analysis of experiences with ESs in our laboratory where we have used an integrated expert system to reduce laboratory errors, detect internal inconsistencies in data, discover new substance abuse subpopulations, and reduce the frequency of sample reprocessing. We have minimized specimen processing time and instrument wear while maximizing technician efficiency and thus performing more tests for the same or reduced costs.</abstract><cop>Niles, IL</cop><pub>Oxford University Press</pub><pmid>2263061</pmid><doi>10.1093/jat/14.5.280</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0146-4760
ispartof Journal of analytical toxicology, 1990-09, Vol.14 (5), p.280-284
issn 0146-4760
1945-2403
language eng
recordid cdi_proquest_miscellaneous_15805454
source MEDLINE; Alma/SFX Local Collection; Oxford University Press Journals Digital Archive Legacy
subjects Algorithms
Artificial Intelligence
Biological and medical sciences
Data processing
Decision Making
Drug abuse
Expert Systems
Forensic Medicine
Forensic science
General aspects. Methods
Medical sciences
Problem solving
Subpopulations
Terminology
Toxicology
title Automated Rule-Based Decision Systems in Forensic Toxicology using Expert Knowledge: Basic Principles and Practical Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T22%3A45%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20Rule-Based%20Decision%20Systems%20in%20Forensic%20Toxicology%20using%20Expert%20Knowledge:%20Basic%20Principles%20and%20Practical%20Applications&rft.jtitle=Journal%20of%20analytical%20toxicology&rft.au=Cechner,%20Ronald%20L.&rft.date=1990-09-01&rft.volume=14&rft.issue=5&rft.spage=280&rft.epage=284&rft.pages=280-284&rft.issn=0146-4760&rft.eissn=1945-2403&rft.coden=JATOD3&rft_id=info:doi/10.1093/jat/14.5.280&rft_dat=%3Cproquest_cross%3E1093473008%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1093473008&rft_id=info:pmid/2263061&rfr_iscdi=true