Automated Rule-Based Decision Systems in Forensic Toxicology using Expert Knowledge: Basic Principles and Practical Applications
This paper presents the basic principles and practical benefits of the application of expert systems (ES) and artificial intelligence (AI) to problem solving in forensic toxicology. We acknowledge the complexity and elegance of the theoretical substance and program algorithms of existing work in the...
Gespeichert in:
Veröffentlicht in: | Journal of analytical toxicology 1990-09, Vol.14 (5), p.280-284 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 284 |
---|---|
container_issue | 5 |
container_start_page | 280 |
container_title | Journal of analytical toxicology |
container_volume | 14 |
creator | Cechner, Ronald L. Sutheimer, Craig A. |
description | This paper presents the basic principles and practical benefits of the application of expert systems (ES) and artificial intelligence (AI) to problem solving in forensic toxicology. We acknowledge the complexity and elegance of the theoretical substance and program algorithms of existing work in these disciplines, while simultaneously observing that many presentations of this material cloak the essential facts and concepts in unnecessary jargon and hyperbole. We attempt to remove the cloak without misrepresenting or oversimplifying the underlying structures. We first present a summary of the history, basic functions, technical fundamentals, and typical applications in three major categories of established ES/AI systems. We then assess the status of ES/AI in the forensic toxicology laboratory (FTL) with emphasis on potential applications. We conclude with an analysis of experiences with ESs in our laboratory where we have used an integrated expert system to reduce laboratory errors, detect internal inconsistencies in data, discover new substance abuse subpopulations, and reduce the frequency of sample reprocessing. We have minimized specimen processing time and instrument wear while maximizing technician efficiency and thus performing more tests for the same or reduced costs. |
doi_str_mv | 10.1093/jat/14.5.280 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_15805454</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1093473008</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-32f6c452b97a9af716672cfdb2c37afe701f89db2b8202aaa55e7a2a8bd4f03e3</originalsourceid><addsrcrecordid>eNp9kc1vEzEQxS0EKmnhxhXJFxAHNvW3d3sLpW0QkUClSBEXa-L1Ri6768XeVZMbfzoWicqN08zo_fRGeg-hV5TMKan4-T2M51TM5ZyV5Ama0UrIggnCn6IZoUIVQivyHJ2mdE8IVaXiJ-iEMcWJojP0ezGNoYPR1fh2al3xAVJePzrrkw89_rZPo-sS9j2-DtH1yVt8F3behjZs93hKvt_iq93g4og_9-GhdfXWXeDsksGv0ffWD61LGPo6n2BHb6HFi2Fo8zLmD-kFetZAm9zL4zxD36-v7i6XxerLzafLxaqwgpZjwVmjrJBsU2mooNFUKc1sU2-Y5Roapwltyiqfm5IRBgBSOg0Myk0tGsIdP0NvD75DDL8ml0bT-WRd20LvwpQMlSWRQooMvvs_mDMXmhNSZvT9AbUxpBRdY4boO4j7DP3lTO7GUGGkyd1k_PXRedp0rn6Ej2Vk_c1Rh5RjaiLk-NI_zyqXKrXKXHHgfC5n96hD_GmU5lqa5fqHWd-uSrJcc3PD_wAERagl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1093473008</pqid></control><display><type>article</type><title>Automated Rule-Based Decision Systems in Forensic Toxicology using Expert Knowledge: Basic Principles and Practical Applications</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><source>Oxford University Press Journals Digital Archive Legacy</source><creator>Cechner, Ronald L. ; Sutheimer, Craig A.</creator><creatorcontrib>Cechner, Ronald L. ; Sutheimer, Craig A.</creatorcontrib><description>This paper presents the basic principles and practical benefits of the application of expert systems (ES) and artificial intelligence (AI) to problem solving in forensic toxicology. We acknowledge the complexity and elegance of the theoretical substance and program algorithms of existing work in these disciplines, while simultaneously observing that many presentations of this material cloak the essential facts and concepts in unnecessary jargon and hyperbole. We attempt to remove the cloak without misrepresenting or oversimplifying the underlying structures. We first present a summary of the history, basic functions, technical fundamentals, and typical applications in three major categories of established ES/AI systems. We then assess the status of ES/AI in the forensic toxicology laboratory (FTL) with emphasis on potential applications. We conclude with an analysis of experiences with ESs in our laboratory where we have used an integrated expert system to reduce laboratory errors, detect internal inconsistencies in data, discover new substance abuse subpopulations, and reduce the frequency of sample reprocessing. We have minimized specimen processing time and instrument wear while maximizing technician efficiency and thus performing more tests for the same or reduced costs.</description><identifier>ISSN: 0146-4760</identifier><identifier>EISSN: 1945-2403</identifier><identifier>DOI: 10.1093/jat/14.5.280</identifier><identifier>PMID: 2263061</identifier><identifier>CODEN: JATOD3</identifier><language>eng</language><publisher>Niles, IL: Oxford University Press</publisher><subject>Algorithms ; Artificial Intelligence ; Biological and medical sciences ; Data processing ; Decision Making ; Drug abuse ; Expert Systems ; Forensic Medicine ; Forensic science ; General aspects. Methods ; Medical sciences ; Problem solving ; Subpopulations ; Terminology ; Toxicology</subject><ispartof>Journal of analytical toxicology, 1990-09, Vol.14 (5), p.280-284</ispartof><rights>1991 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-32f6c452b97a9af716672cfdb2c37afe701f89db2b8202aaa55e7a2a8bd4f03e3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19403576$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/2263061$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cechner, Ronald L.</creatorcontrib><creatorcontrib>Sutheimer, Craig A.</creatorcontrib><title>Automated Rule-Based Decision Systems in Forensic Toxicology using Expert Knowledge: Basic Principles and Practical Applications</title><title>Journal of analytical toxicology</title><addtitle>Journal of Analytical Toxicology</addtitle><description>This paper presents the basic principles and practical benefits of the application of expert systems (ES) and artificial intelligence (AI) to problem solving in forensic toxicology. We acknowledge the complexity and elegance of the theoretical substance and program algorithms of existing work in these disciplines, while simultaneously observing that many presentations of this material cloak the essential facts and concepts in unnecessary jargon and hyperbole. We attempt to remove the cloak without misrepresenting or oversimplifying the underlying structures. We first present a summary of the history, basic functions, technical fundamentals, and typical applications in three major categories of established ES/AI systems. We then assess the status of ES/AI in the forensic toxicology laboratory (FTL) with emphasis on potential applications. We conclude with an analysis of experiences with ESs in our laboratory where we have used an integrated expert system to reduce laboratory errors, detect internal inconsistencies in data, discover new substance abuse subpopulations, and reduce the frequency of sample reprocessing. We have minimized specimen processing time and instrument wear while maximizing technician efficiency and thus performing more tests for the same or reduced costs.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Biological and medical sciences</subject><subject>Data processing</subject><subject>Decision Making</subject><subject>Drug abuse</subject><subject>Expert Systems</subject><subject>Forensic Medicine</subject><subject>Forensic science</subject><subject>General aspects. Methods</subject><subject>Medical sciences</subject><subject>Problem solving</subject><subject>Subpopulations</subject><subject>Terminology</subject><subject>Toxicology</subject><issn>0146-4760</issn><issn>1945-2403</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1990</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc1vEzEQxS0EKmnhxhXJFxAHNvW3d3sLpW0QkUClSBEXa-L1Ri6768XeVZMbfzoWicqN08zo_fRGeg-hV5TMKan4-T2M51TM5ZyV5Ama0UrIggnCn6IZoUIVQivyHJ2mdE8IVaXiJ-iEMcWJojP0ezGNoYPR1fh2al3xAVJePzrrkw89_rZPo-sS9j2-DtH1yVt8F3behjZs93hKvt_iq93g4og_9-GhdfXWXeDsksGv0ffWD61LGPo6n2BHb6HFi2Fo8zLmD-kFetZAm9zL4zxD36-v7i6XxerLzafLxaqwgpZjwVmjrJBsU2mooNFUKc1sU2-Y5Roapwltyiqfm5IRBgBSOg0Myk0tGsIdP0NvD75DDL8ml0bT-WRd20LvwpQMlSWRQooMvvs_mDMXmhNSZvT9AbUxpBRdY4boO4j7DP3lTO7GUGGkyd1k_PXRedp0rn6Ej2Vk_c1Rh5RjaiLk-NI_zyqXKrXKXHHgfC5n96hD_GmU5lqa5fqHWd-uSrJcc3PD_wAERagl</recordid><startdate>19900901</startdate><enddate>19900901</enddate><creator>Cechner, Ronald L.</creator><creator>Sutheimer, Craig A.</creator><general>Oxford University Press</general><general>Preston</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U7</scope><scope>C1K</scope></search><sort><creationdate>19900901</creationdate><title>Automated Rule-Based Decision Systems in Forensic Toxicology using Expert Knowledge: Basic Principles and Practical Applications</title><author>Cechner, Ronald L. ; Sutheimer, Craig A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-32f6c452b97a9af716672cfdb2c37afe701f89db2b8202aaa55e7a2a8bd4f03e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1990</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Biological and medical sciences</topic><topic>Data processing</topic><topic>Decision Making</topic><topic>Drug abuse</topic><topic>Expert Systems</topic><topic>Forensic Medicine</topic><topic>Forensic science</topic><topic>General aspects. Methods</topic><topic>Medical sciences</topic><topic>Problem solving</topic><topic>Subpopulations</topic><topic>Terminology</topic><topic>Toxicology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cechner, Ronald L.</creatorcontrib><creatorcontrib>Sutheimer, Craig A.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Journal of analytical toxicology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cechner, Ronald L.</au><au>Sutheimer, Craig A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated Rule-Based Decision Systems in Forensic Toxicology using Expert Knowledge: Basic Principles and Practical Applications</atitle><jtitle>Journal of analytical toxicology</jtitle><addtitle>Journal of Analytical Toxicology</addtitle><date>1990-09-01</date><risdate>1990</risdate><volume>14</volume><issue>5</issue><spage>280</spage><epage>284</epage><pages>280-284</pages><issn>0146-4760</issn><eissn>1945-2403</eissn><coden>JATOD3</coden><abstract>This paper presents the basic principles and practical benefits of the application of expert systems (ES) and artificial intelligence (AI) to problem solving in forensic toxicology. We acknowledge the complexity and elegance of the theoretical substance and program algorithms of existing work in these disciplines, while simultaneously observing that many presentations of this material cloak the essential facts and concepts in unnecessary jargon and hyperbole. We attempt to remove the cloak without misrepresenting or oversimplifying the underlying structures. We first present a summary of the history, basic functions, technical fundamentals, and typical applications in three major categories of established ES/AI systems. We then assess the status of ES/AI in the forensic toxicology laboratory (FTL) with emphasis on potential applications. We conclude with an analysis of experiences with ESs in our laboratory where we have used an integrated expert system to reduce laboratory errors, detect internal inconsistencies in data, discover new substance abuse subpopulations, and reduce the frequency of sample reprocessing. We have minimized specimen processing time and instrument wear while maximizing technician efficiency and thus performing more tests for the same or reduced costs.</abstract><cop>Niles, IL</cop><pub>Oxford University Press</pub><pmid>2263061</pmid><doi>10.1093/jat/14.5.280</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0146-4760 |
ispartof | Journal of analytical toxicology, 1990-09, Vol.14 (5), p.280-284 |
issn | 0146-4760 1945-2403 |
language | eng |
recordid | cdi_proquest_miscellaneous_15805454 |
source | MEDLINE; Alma/SFX Local Collection; Oxford University Press Journals Digital Archive Legacy |
subjects | Algorithms Artificial Intelligence Biological and medical sciences Data processing Decision Making Drug abuse Expert Systems Forensic Medicine Forensic science General aspects. Methods Medical sciences Problem solving Subpopulations Terminology Toxicology |
title | Automated Rule-Based Decision Systems in Forensic Toxicology using Expert Knowledge: Basic Principles and Practical Applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T22%3A45%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20Rule-Based%20Decision%20Systems%20in%20Forensic%20Toxicology%20using%20Expert%20Knowledge:%20Basic%20Principles%20and%20Practical%20Applications&rft.jtitle=Journal%20of%20analytical%20toxicology&rft.au=Cechner,%20Ronald%20L.&rft.date=1990-09-01&rft.volume=14&rft.issue=5&rft.spage=280&rft.epage=284&rft.pages=280-284&rft.issn=0146-4760&rft.eissn=1945-2403&rft.coden=JATOD3&rft_id=info:doi/10.1093/jat/14.5.280&rft_dat=%3Cproquest_cross%3E1093473008%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1093473008&rft_id=info:pmid/2263061&rfr_iscdi=true |