Biotransformation of α-, β-, γ-, and δ-Hexachlorocyclohexane under Methanogenic Conditions
During the production of the pesticide lindane (γ-hexachlorocyclohexane; γ-HCH), large quantities of byproducts, like the α-, β-, and δ-HCH isomers, were discarded at dump sites. β-HCH was found to be extremely persistent in the environment under aerobic conditions. We studied the degradation of thi...
Gespeichert in:
Veröffentlicht in: | Environmental science & technology 1996-07, Vol.30 (7), p.2345-2349 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | During the production of the pesticide lindane (γ-hexachlorocyclohexane; γ-HCH), large quantities of byproducts, like the α-, β-, and δ-HCH isomers, were discarded at dump sites. β-HCH was found to be extremely persistent in the environment under aerobic conditions. We studied the degradation of this isomer under methanogenic conditions in a flow-through column packed with polluted sediment. β-HCH was completely removed in this system. Chlorobenzene was detected in the effluent as a product. A β-HCH transforming anaerobic enrichment culture was obtained in batch cultures by using the column material as inoculum. δ-2,3,4,5-Tetrachlorocyclohexene is proposed as an intermediate during transformation, while benzene and chlorobenzene were formed as stable end products. The enrichment culture was also able to dechlorinate α-HCH at a comparable rate and γ- and δ-HCH at lower rates. Dechlorination was inhibited by the addition of vancomycin, but not by the addition of bromoethanesulfonic acid. Pasteurization inhibited dechlorination completely. This is the first detailed description of the biodegradation of β-HCH, including intermediate and end product identification, under defined anaerobic conditions. |
---|---|
ISSN: | 0013-936X 1520-5851 |
DOI: | 10.1021/es950782+ |