Microhabitat Analysis Using Radiotelemetry Locations and Polytomous Logistic Regression

Microhabitat analyses often use discriminant function analysis (DFA) to compare vegetation structures or environmental conditions between sites classified by a study animal's presence or absence. These presence/absence studies make questionable assumptions about the habitat value of the compari...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of wildlife management 1996-07, Vol.60 (3), p.639-653
Hauptverfasser: North, Malcolm P., Reynolds, Joel H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 653
container_issue 3
container_start_page 639
container_title The Journal of wildlife management
container_volume 60
creator North, Malcolm P.
Reynolds, Joel H.
description Microhabitat analyses often use discriminant function analysis (DFA) to compare vegetation structures or environmental conditions between sites classified by a study animal's presence or absence. These presence/absence studies make questionable assumptions about the habitat value of the comparison sites and the microhabitat data often violate the DFA's assumptions of an equal covariance structure and multivariate normality. An alternative is to generate an ordinal measure of site-use intensity from radiotelemetry locations. This measure is derived from the percentage of total telemetry points of a study animal that are found at use-only sites, overcoming many of the problems associated with defining "absence" sites. The use-intensity response is then modeled as a function of microhabitat variables using ordered polytomous logistic regression (PLR). Unlike DFA, PLR does not require covariance equality or multivariate normality, and allows categorical microhabitat variables. The classification error of the microhabitat model developed with PLR is then assessed by jackknifing. This technique is demonstrated with an example analysis of the foraging microhabitat of the northern spotted owl (Strix occidentalis caurina). The resulting model correctly classified 78% of the sample stands in the jackknife evaluation. For animals with site fidelity and radiotelemetry data, the proposed technique may provide a robust alternative for microhabitat analysis.
doi_str_mv 10.2307/3802083
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_15704157</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3802083</jstor_id><sourcerecordid>3802083</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-da3e87a94777bb05d3a8cde11daf94c2bd4c739511b5518e44010c5b517f75d23</originalsourceid><addsrcrecordid>eNp10F1LwzAUBuAgCs4p_oUiolfVfJr2cgy_YKIMh96VNElnRtvMnOyi_97IhoLgTc5FHl7OeRE6JfiKMiyvWYEpLtgeGpGSyZwWRO6jEcaU5oKT90N0BLDCmBFS3IzQ25PTwX-o2kUVs0mv2gEcZAtw_TKbK-N8tK3tbAxDNvNaRed7yFRvshffDtF3fgPpY-kgOp3N7TJYgGSO0UGjWrAnuzlGi7vb1-lDPnu-f5xOZrlmrIy5UcwWUpVcSlnXWBimCm0sIUY1Jde0NlxLVgpCaiFIYTnHBGtRCyIbKQxlY3SxzV0H_7mxEKvOgbZtq3qbVquIkJinJ8GzP3DlNyHdCxVlnGImpEjocotSJwDBNtU6uE6FoSK4-m632rWb5PkuToFWbRNUrx38cEZKUTDxy1YQffg37QuQOYQV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>234203575</pqid></control><display><type>article</type><title>Microhabitat Analysis Using Radiotelemetry Locations and Polytomous Logistic Regression</title><source>JSTOR</source><creator>North, Malcolm P. ; Reynolds, Joel H.</creator><creatorcontrib>North, Malcolm P. ; Reynolds, Joel H.</creatorcontrib><description>Microhabitat analyses often use discriminant function analysis (DFA) to compare vegetation structures or environmental conditions between sites classified by a study animal's presence or absence. These presence/absence studies make questionable assumptions about the habitat value of the comparison sites and the microhabitat data often violate the DFA's assumptions of an equal covariance structure and multivariate normality. An alternative is to generate an ordinal measure of site-use intensity from radiotelemetry locations. This measure is derived from the percentage of total telemetry points of a study animal that are found at use-only sites, overcoming many of the problems associated with defining "absence" sites. The use-intensity response is then modeled as a function of microhabitat variables using ordered polytomous logistic regression (PLR). Unlike DFA, PLR does not require covariance equality or multivariate normality, and allows categorical microhabitat variables. The classification error of the microhabitat model developed with PLR is then assessed by jackknifing. This technique is demonstrated with an example analysis of the foraging microhabitat of the northern spotted owl (Strix occidentalis caurina). The resulting model correctly classified 78% of the sample stands in the jackknife evaluation. For animals with site fidelity and radiotelemetry data, the proposed technique may provide a robust alternative for microhabitat analysis.</description><identifier>ISSN: 0022-541X</identifier><identifier>EISSN: 1937-2817</identifier><identifier>DOI: 10.2307/3802083</identifier><identifier>CODEN: JWMAA9</identifier><language>eng</language><publisher>Bethesda, MD: The Wildlife Society</publisher><subject>Analysis ; Animal, plant and microbial ecology ; Animals ; Biological and medical sciences ; Forest habitats ; Forest stands ; Fundamental and applied biological sciences. Psychology ; General aspects. Techniques ; Habitats ; Logistic regression ; Methods and techniques (sampling, tagging, trapping, modelling...) ; Microhabitats ; Modeling ; Old growth forests ; Owls ; Telemetry ; Wildlife habitats</subject><ispartof>The Journal of wildlife management, 1996-07, Vol.60 (3), p.639-653</ispartof><rights>Copyright 1996 The Wildlife Society</rights><rights>1996 INIST-CNRS</rights><rights>Copyright Wildlife Society Jul 1996</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-da3e87a94777bb05d3a8cde11daf94c2bd4c739511b5518e44010c5b517f75d23</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3802083$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3802083$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,27924,27925,58017,58250</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3195835$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>North, Malcolm P.</creatorcontrib><creatorcontrib>Reynolds, Joel H.</creatorcontrib><title>Microhabitat Analysis Using Radiotelemetry Locations and Polytomous Logistic Regression</title><title>The Journal of wildlife management</title><description>Microhabitat analyses often use discriminant function analysis (DFA) to compare vegetation structures or environmental conditions between sites classified by a study animal's presence or absence. These presence/absence studies make questionable assumptions about the habitat value of the comparison sites and the microhabitat data often violate the DFA's assumptions of an equal covariance structure and multivariate normality. An alternative is to generate an ordinal measure of site-use intensity from radiotelemetry locations. This measure is derived from the percentage of total telemetry points of a study animal that are found at use-only sites, overcoming many of the problems associated with defining "absence" sites. The use-intensity response is then modeled as a function of microhabitat variables using ordered polytomous logistic regression (PLR). Unlike DFA, PLR does not require covariance equality or multivariate normality, and allows categorical microhabitat variables. The classification error of the microhabitat model developed with PLR is then assessed by jackknifing. This technique is demonstrated with an example analysis of the foraging microhabitat of the northern spotted owl (Strix occidentalis caurina). The resulting model correctly classified 78% of the sample stands in the jackknife evaluation. For animals with site fidelity and radiotelemetry data, the proposed technique may provide a robust alternative for microhabitat analysis.</description><subject>Analysis</subject><subject>Animal, plant and microbial ecology</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Forest habitats</subject><subject>Forest stands</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects. Techniques</subject><subject>Habitats</subject><subject>Logistic regression</subject><subject>Methods and techniques (sampling, tagging, trapping, modelling...)</subject><subject>Microhabitats</subject><subject>Modeling</subject><subject>Old growth forests</subject><subject>Owls</subject><subject>Telemetry</subject><subject>Wildlife habitats</subject><issn>0022-541X</issn><issn>1937-2817</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNp10F1LwzAUBuAgCs4p_oUiolfVfJr2cgy_YKIMh96VNElnRtvMnOyi_97IhoLgTc5FHl7OeRE6JfiKMiyvWYEpLtgeGpGSyZwWRO6jEcaU5oKT90N0BLDCmBFS3IzQ25PTwX-o2kUVs0mv2gEcZAtw_TKbK-N8tK3tbAxDNvNaRed7yFRvshffDtF3fgPpY-kgOp3N7TJYgGSO0UGjWrAnuzlGi7vb1-lDPnu-f5xOZrlmrIy5UcwWUpVcSlnXWBimCm0sIUY1Jde0NlxLVgpCaiFIYTnHBGtRCyIbKQxlY3SxzV0H_7mxEKvOgbZtq3qbVquIkJinJ8GzP3DlNyHdCxVlnGImpEjocotSJwDBNtU6uE6FoSK4-m632rWb5PkuToFWbRNUrx38cEZKUTDxy1YQffg37QuQOYQV</recordid><startdate>19960701</startdate><enddate>19960701</enddate><creator>North, Malcolm P.</creator><creator>Reynolds, Joel H.</creator><general>The Wildlife Society</general><general>Wildlife Society</general><general>Blackwell Publishing Ltd</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7SN</scope><scope>7ST</scope><scope>7T7</scope><scope>7U6</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope></search><sort><creationdate>19960701</creationdate><title>Microhabitat Analysis Using Radiotelemetry Locations and Polytomous Logistic Regression</title><author>North, Malcolm P. ; Reynolds, Joel H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-da3e87a94777bb05d3a8cde11daf94c2bd4c739511b5518e44010c5b517f75d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Analysis</topic><topic>Animal, plant and microbial ecology</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Forest habitats</topic><topic>Forest stands</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects. Techniques</topic><topic>Habitats</topic><topic>Logistic regression</topic><topic>Methods and techniques (sampling, tagging, trapping, modelling...)</topic><topic>Microhabitats</topic><topic>Modeling</topic><topic>Old growth forests</topic><topic>Owls</topic><topic>Telemetry</topic><topic>Wildlife habitats</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>North, Malcolm P.</creatorcontrib><creatorcontrib>Reynolds, Joel H.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Sustainability Science Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>The Journal of wildlife management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>North, Malcolm P.</au><au>Reynolds, Joel H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microhabitat Analysis Using Radiotelemetry Locations and Polytomous Logistic Regression</atitle><jtitle>The Journal of wildlife management</jtitle><date>1996-07-01</date><risdate>1996</risdate><volume>60</volume><issue>3</issue><spage>639</spage><epage>653</epage><pages>639-653</pages><issn>0022-541X</issn><eissn>1937-2817</eissn><coden>JWMAA9</coden><abstract>Microhabitat analyses often use discriminant function analysis (DFA) to compare vegetation structures or environmental conditions between sites classified by a study animal's presence or absence. These presence/absence studies make questionable assumptions about the habitat value of the comparison sites and the microhabitat data often violate the DFA's assumptions of an equal covariance structure and multivariate normality. An alternative is to generate an ordinal measure of site-use intensity from radiotelemetry locations. This measure is derived from the percentage of total telemetry points of a study animal that are found at use-only sites, overcoming many of the problems associated with defining "absence" sites. The use-intensity response is then modeled as a function of microhabitat variables using ordered polytomous logistic regression (PLR). Unlike DFA, PLR does not require covariance equality or multivariate normality, and allows categorical microhabitat variables. The classification error of the microhabitat model developed with PLR is then assessed by jackknifing. This technique is demonstrated with an example analysis of the foraging microhabitat of the northern spotted owl (Strix occidentalis caurina). The resulting model correctly classified 78% of the sample stands in the jackknife evaluation. For animals with site fidelity and radiotelemetry data, the proposed technique may provide a robust alternative for microhabitat analysis.</abstract><cop>Bethesda, MD</cop><pub>The Wildlife Society</pub><doi>10.2307/3802083</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-541X
ispartof The Journal of wildlife management, 1996-07, Vol.60 (3), p.639-653
issn 0022-541X
1937-2817
language eng
recordid cdi_proquest_miscellaneous_15704157
source JSTOR
subjects Analysis
Animal, plant and microbial ecology
Animals
Biological and medical sciences
Forest habitats
Forest stands
Fundamental and applied biological sciences. Psychology
General aspects. Techniques
Habitats
Logistic regression
Methods and techniques (sampling, tagging, trapping, modelling...)
Microhabitats
Modeling
Old growth forests
Owls
Telemetry
Wildlife habitats
title Microhabitat Analysis Using Radiotelemetry Locations and Polytomous Logistic Regression
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T01%3A13%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microhabitat%20Analysis%20Using%20Radiotelemetry%20Locations%20and%20Polytomous%20Logistic%20Regression&rft.jtitle=The%20Journal%20of%20wildlife%20management&rft.au=North,%20Malcolm%20P.&rft.date=1996-07-01&rft.volume=60&rft.issue=3&rft.spage=639&rft.epage=653&rft.pages=639-653&rft.issn=0022-541X&rft.eissn=1937-2817&rft.coden=JWMAA9&rft_id=info:doi/10.2307/3802083&rft_dat=%3Cjstor_proqu%3E3802083%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=234203575&rft_id=info:pmid/&rft_jstor_id=3802083&rfr_iscdi=true