Mode of Interaction of the Zinc Finger Protein TFIIIA with a 5S RNA Gene of Xenopus
The zinc finger protein TFIIIA, a positive transcription factor of the 5S RNA gene, binds to an internal control region of 50 nucleotides. Two modes of binding have been considered for the TFIIIA-DNA complex, one of which has been proposed on the basis of nuclease and chemical protection experiments...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 1990-07, Vol.87 (14), p.5528-5532 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5532 |
---|---|
container_issue | 14 |
container_start_page | 5528 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 87 |
creator | Mair E. A. Churchill Tullius, Thomas D. Klug, Aaron |
description | The zinc finger protein TFIIIA, a positive transcription factor of the 5S RNA gene, binds to an internal control region of 50 nucleotides. Two modes of binding have been considered for the TFIIIA-DNA complex, one of which has been proposed on the basis of nuclease and chemical protection experiments and the other on model building. Since then, evidence has accumulated on the structures of individual components of the complex--for example, zinc finger polypeptides studied by NMR and a segment of the binding site analyzed by x-ray crystallography, but no high-resolution structural data on the TFIIIA-DNA complex itself are available. Probes used previously to study the TFIIIA-DNA complex do not react with every nucleotide of DNA, unlike hydroxyl radical, which cleaves DNA at every backbone position. We describe here the quantitative analysis of high-resolution hydroxyl radical footprints and suggest how the array of zinc fingers might interact with the double helix. |
doi_str_mv | 10.1073/pnas.87.14.5528 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_15684817</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2355120</jstor_id><sourcerecordid>2355120</sourcerecordid><originalsourceid>FETCH-LOGICAL-c579t-81c3bfbdeefe53b8676d61a23b0304e57b1b22acff73465ab7ba73c4efd9bf773</originalsourceid><addsrcrecordid>eNqFkUtvEzEUhUcIVEJhzQaQhQSsktrj50hsooqUkcpDtEiIjeVxrhtXEzvYDo9_zwwJDWxgZVnnu-ce-1TVQ4JnBEt6sgkmz5ScETbjvFa3qgnBDZkK1uDb1QTjWk4Vq9nd6l7O1xjjhit8VB3VRDCh5KS6eBOXgKJDbSiQjC0-hvFaVoA--2DRwocrSOh9igV8QJeLtm3n6JsvK2QQv0Af3s7RGYRfHp8gxM0236_uONNneLA_j6uPi1eXp6-n5-_O2tP5-dRy2ZSpIpZ2rlsCOOC0U0KKpSCmph2mmAGXHenq2ljnJGWCm052RlLLwC2bzklJj6uXO9_NtlvD0kIoyfR6k_zapB86Gq__VoJf6av4VXNGuRrGn-7GYy5eZ-sL2JWNIYAtWgx_pTgfoOf7HSl-2UIueu2zhb43AeI2a9koRUn9f5BwoZgiY-qTHWhTzDmBuwlMsB471WOnWklNmB47HSYe__nOG35f4qA_2-smW9O7ZIL1-WDbCCwFHn1e7LlxwW_5sEi7bd8X-F4G8sk_yQF4tAOuc4npkIhyTmpMfwIWUMq7</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>15684817</pqid></control><display><type>article</type><title>Mode of Interaction of the Zinc Finger Protein TFIIIA with a 5S RNA Gene of Xenopus</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Mair E. A. Churchill ; Tullius, Thomas D. ; Klug, Aaron</creator><creatorcontrib>Mair E. A. Churchill ; Tullius, Thomas D. ; Klug, Aaron</creatorcontrib><description>The zinc finger protein TFIIIA, a positive transcription factor of the 5S RNA gene, binds to an internal control region of 50 nucleotides. Two modes of binding have been considered for the TFIIIA-DNA complex, one of which has been proposed on the basis of nuclease and chemical protection experiments and the other on model building. Since then, evidence has accumulated on the structures of individual components of the complex--for example, zinc finger polypeptides studied by NMR and a segment of the binding site analyzed by x-ray crystallography, but no high-resolution structural data on the TFIIIA-DNA complex itself are available. Probes used previously to study the TFIIIA-DNA complex do not react with every nucleotide of DNA, unlike hydroxyl radical, which cleaves DNA at every backbone position. We describe here the quantitative analysis of high-resolution hydroxyl radical footprints and suggest how the array of zinc fingers might interact with the double helix.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.87.14.5528</identifier><identifier>PMID: 2164687</identifier><identifier>CODEN: PNASA6</identifier><language>eng</language><publisher>Washington, DC: National Academy of Sciences of the United States of America</publisher><subject>550201 - Biochemistry- Tracer Techniques ; AMPHIBIANS ; ANIMALS ; AQUATIC ORGANISMS ; BASIC BIOLOGICAL SCIENCES ; Binding sites ; BIOCHEMICAL REACTION KINETICS ; Biological and medical sciences ; Chromosomal crossover ; DNA ; DNA probes ; DNA, Ribosomal - genetics ; DNA, Ribosomal - metabolism ; DNA-Binding Proteins - metabolism ; Free Radicals ; Fundamental and applied biological sciences. Psychology ; GENE OPERONS ; Genes ; Hydroxides - analysis ; Hydroxyl Radical ; HYDROXYL RADICALS ; Interactions. Associations ; Intermolecular phenomena ; KINETICS ; MAGNETIC RESONANCE ; Magnetic Resonance Spectroscopy ; Metalloproteins - metabolism ; Models, Structural ; Molecular biophysics ; MOLECULAR STRUCTURE ; NUCLEAR MAGNETIC RESONANCE ; Nucleic Acid Conformation ; NUCLEIC ACIDS ; NUCLEOPROTEINS ; Nucleotides ; ORGANIC COMPOUNDS ; Periodicity ; Protein Binding ; Protein Conformation ; PROTEINS ; RADICALS ; REACTION KINETICS ; RESONANCE ; RIBOSOMAL RNA ; RNA ; RNA, Ribosomal - genetics ; RNA, Ribosomal, 5S - genetics ; Transcription Factor TFIIIA ; TRANSCRIPTION FACTORS ; Transcription Factors - metabolism ; VERTEBRATES ; X-Ray Diffraction ; Xenopus ; Zinc ; Zinc - metabolism ; ZINC COMPOUNDS</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 1990-07, Vol.87 (14), p.5528-5532</ispartof><rights>1991 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c579t-81c3bfbdeefe53b8676d61a23b0304e57b1b22acff73465ab7ba73c4efd9bf773</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/87/14.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2355120$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2355120$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27923,27924,53790,53792,58016,58249</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19607608$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/2164687$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/6000855$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Mair E. A. Churchill</creatorcontrib><creatorcontrib>Tullius, Thomas D.</creatorcontrib><creatorcontrib>Klug, Aaron</creatorcontrib><title>Mode of Interaction of the Zinc Finger Protein TFIIIA with a 5S RNA Gene of Xenopus</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The zinc finger protein TFIIIA, a positive transcription factor of the 5S RNA gene, binds to an internal control region of 50 nucleotides. Two modes of binding have been considered for the TFIIIA-DNA complex, one of which has been proposed on the basis of nuclease and chemical protection experiments and the other on model building. Since then, evidence has accumulated on the structures of individual components of the complex--for example, zinc finger polypeptides studied by NMR and a segment of the binding site analyzed by x-ray crystallography, but no high-resolution structural data on the TFIIIA-DNA complex itself are available. Probes used previously to study the TFIIIA-DNA complex do not react with every nucleotide of DNA, unlike hydroxyl radical, which cleaves DNA at every backbone position. We describe here the quantitative analysis of high-resolution hydroxyl radical footprints and suggest how the array of zinc fingers might interact with the double helix.</description><subject>550201 - Biochemistry- Tracer Techniques</subject><subject>AMPHIBIANS</subject><subject>ANIMALS</subject><subject>AQUATIC ORGANISMS</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Binding sites</subject><subject>BIOCHEMICAL REACTION KINETICS</subject><subject>Biological and medical sciences</subject><subject>Chromosomal crossover</subject><subject>DNA</subject><subject>DNA probes</subject><subject>DNA, Ribosomal - genetics</subject><subject>DNA, Ribosomal - metabolism</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Free Radicals</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>GENE OPERONS</subject><subject>Genes</subject><subject>Hydroxides - analysis</subject><subject>Hydroxyl Radical</subject><subject>HYDROXYL RADICALS</subject><subject>Interactions. Associations</subject><subject>Intermolecular phenomena</subject><subject>KINETICS</subject><subject>MAGNETIC RESONANCE</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>Metalloproteins - metabolism</subject><subject>Models, Structural</subject><subject>Molecular biophysics</subject><subject>MOLECULAR STRUCTURE</subject><subject>NUCLEAR MAGNETIC RESONANCE</subject><subject>Nucleic Acid Conformation</subject><subject>NUCLEIC ACIDS</subject><subject>NUCLEOPROTEINS</subject><subject>Nucleotides</subject><subject>ORGANIC COMPOUNDS</subject><subject>Periodicity</subject><subject>Protein Binding</subject><subject>Protein Conformation</subject><subject>PROTEINS</subject><subject>RADICALS</subject><subject>REACTION KINETICS</subject><subject>RESONANCE</subject><subject>RIBOSOMAL RNA</subject><subject>RNA</subject><subject>RNA, Ribosomal - genetics</subject><subject>RNA, Ribosomal, 5S - genetics</subject><subject>Transcription Factor TFIIIA</subject><subject>TRANSCRIPTION FACTORS</subject><subject>Transcription Factors - metabolism</subject><subject>VERTEBRATES</subject><subject>X-Ray Diffraction</subject><subject>Xenopus</subject><subject>Zinc</subject><subject>Zinc - metabolism</subject><subject>ZINC COMPOUNDS</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1990</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUtvEzEUhUcIVEJhzQaQhQSsktrj50hsooqUkcpDtEiIjeVxrhtXEzvYDo9_zwwJDWxgZVnnu-ce-1TVQ4JnBEt6sgkmz5ScETbjvFa3qgnBDZkK1uDb1QTjWk4Vq9nd6l7O1xjjhit8VB3VRDCh5KS6eBOXgKJDbSiQjC0-hvFaVoA--2DRwocrSOh9igV8QJeLtm3n6JsvK2QQv0Af3s7RGYRfHp8gxM0236_uONNneLA_j6uPi1eXp6-n5-_O2tP5-dRy2ZSpIpZ2rlsCOOC0U0KKpSCmph2mmAGXHenq2ljnJGWCm052RlLLwC2bzklJj6uXO9_NtlvD0kIoyfR6k_zapB86Gq__VoJf6av4VXNGuRrGn-7GYy5eZ-sL2JWNIYAtWgx_pTgfoOf7HSl-2UIueu2zhb43AeI2a9koRUn9f5BwoZgiY-qTHWhTzDmBuwlMsB471WOnWklNmB47HSYe__nOG35f4qA_2-smW9O7ZIL1-WDbCCwFHn1e7LlxwW_5sEi7bd8X-F4G8sk_yQF4tAOuc4npkIhyTmpMfwIWUMq7</recordid><startdate>19900701</startdate><enddate>19900701</enddate><creator>Mair E. A. Churchill</creator><creator>Tullius, Thomas D.</creator><creator>Klug, Aaron</creator><general>National Academy of Sciences of the United States of America</general><general>National Acad Sciences</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>19900701</creationdate><title>Mode of Interaction of the Zinc Finger Protein TFIIIA with a 5S RNA Gene of Xenopus</title><author>Mair E. A. Churchill ; Tullius, Thomas D. ; Klug, Aaron</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c579t-81c3bfbdeefe53b8676d61a23b0304e57b1b22acff73465ab7ba73c4efd9bf773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1990</creationdate><topic>550201 - Biochemistry- Tracer Techniques</topic><topic>AMPHIBIANS</topic><topic>ANIMALS</topic><topic>AQUATIC ORGANISMS</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Binding sites</topic><topic>BIOCHEMICAL REACTION KINETICS</topic><topic>Biological and medical sciences</topic><topic>Chromosomal crossover</topic><topic>DNA</topic><topic>DNA probes</topic><topic>DNA, Ribosomal - genetics</topic><topic>DNA, Ribosomal - metabolism</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Free Radicals</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>GENE OPERONS</topic><topic>Genes</topic><topic>Hydroxides - analysis</topic><topic>Hydroxyl Radical</topic><topic>HYDROXYL RADICALS</topic><topic>Interactions. Associations</topic><topic>Intermolecular phenomena</topic><topic>KINETICS</topic><topic>MAGNETIC RESONANCE</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>Metalloproteins - metabolism</topic><topic>Models, Structural</topic><topic>Molecular biophysics</topic><topic>MOLECULAR STRUCTURE</topic><topic>NUCLEAR MAGNETIC RESONANCE</topic><topic>Nucleic Acid Conformation</topic><topic>NUCLEIC ACIDS</topic><topic>NUCLEOPROTEINS</topic><topic>Nucleotides</topic><topic>ORGANIC COMPOUNDS</topic><topic>Periodicity</topic><topic>Protein Binding</topic><topic>Protein Conformation</topic><topic>PROTEINS</topic><topic>RADICALS</topic><topic>REACTION KINETICS</topic><topic>RESONANCE</topic><topic>RIBOSOMAL RNA</topic><topic>RNA</topic><topic>RNA, Ribosomal - genetics</topic><topic>RNA, Ribosomal, 5S - genetics</topic><topic>Transcription Factor TFIIIA</topic><topic>TRANSCRIPTION FACTORS</topic><topic>Transcription Factors - metabolism</topic><topic>VERTEBRATES</topic><topic>X-Ray Diffraction</topic><topic>Xenopus</topic><topic>Zinc</topic><topic>Zinc - metabolism</topic><topic>ZINC COMPOUNDS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mair E. A. Churchill</creatorcontrib><creatorcontrib>Tullius, Thomas D.</creatorcontrib><creatorcontrib>Klug, Aaron</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mair E. A. Churchill</au><au>Tullius, Thomas D.</au><au>Klug, Aaron</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mode of Interaction of the Zinc Finger Protein TFIIIA with a 5S RNA Gene of Xenopus</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>1990-07-01</date><risdate>1990</risdate><volume>87</volume><issue>14</issue><spage>5528</spage><epage>5532</epage><pages>5528-5532</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><coden>PNASA6</coden><abstract>The zinc finger protein TFIIIA, a positive transcription factor of the 5S RNA gene, binds to an internal control region of 50 nucleotides. Two modes of binding have been considered for the TFIIIA-DNA complex, one of which has been proposed on the basis of nuclease and chemical protection experiments and the other on model building. Since then, evidence has accumulated on the structures of individual components of the complex--for example, zinc finger polypeptides studied by NMR and a segment of the binding site analyzed by x-ray crystallography, but no high-resolution structural data on the TFIIIA-DNA complex itself are available. Probes used previously to study the TFIIIA-DNA complex do not react with every nucleotide of DNA, unlike hydroxyl radical, which cleaves DNA at every backbone position. We describe here the quantitative analysis of high-resolution hydroxyl radical footprints and suggest how the array of zinc fingers might interact with the double helix.</abstract><cop>Washington, DC</cop><pub>National Academy of Sciences of the United States of America</pub><pmid>2164687</pmid><doi>10.1073/pnas.87.14.5528</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 1990-07, Vol.87 (14), p.5528-5532 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_proquest_miscellaneous_15684817 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | 550201 - Biochemistry- Tracer Techniques AMPHIBIANS ANIMALS AQUATIC ORGANISMS BASIC BIOLOGICAL SCIENCES Binding sites BIOCHEMICAL REACTION KINETICS Biological and medical sciences Chromosomal crossover DNA DNA probes DNA, Ribosomal - genetics DNA, Ribosomal - metabolism DNA-Binding Proteins - metabolism Free Radicals Fundamental and applied biological sciences. Psychology GENE OPERONS Genes Hydroxides - analysis Hydroxyl Radical HYDROXYL RADICALS Interactions. Associations Intermolecular phenomena KINETICS MAGNETIC RESONANCE Magnetic Resonance Spectroscopy Metalloproteins - metabolism Models, Structural Molecular biophysics MOLECULAR STRUCTURE NUCLEAR MAGNETIC RESONANCE Nucleic Acid Conformation NUCLEIC ACIDS NUCLEOPROTEINS Nucleotides ORGANIC COMPOUNDS Periodicity Protein Binding Protein Conformation PROTEINS RADICALS REACTION KINETICS RESONANCE RIBOSOMAL RNA RNA RNA, Ribosomal - genetics RNA, Ribosomal, 5S - genetics Transcription Factor TFIIIA TRANSCRIPTION FACTORS Transcription Factors - metabolism VERTEBRATES X-Ray Diffraction Xenopus Zinc Zinc - metabolism ZINC COMPOUNDS |
title | Mode of Interaction of the Zinc Finger Protein TFIIIA with a 5S RNA Gene of Xenopus |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T21%3A22%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mode%20of%20Interaction%20of%20the%20Zinc%20Finger%20Protein%20TFIIIA%20with%20a%205S%20RNA%20Gene%20of%20Xenopus&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Mair%20E.%20A.%20Churchill&rft.date=1990-07-01&rft.volume=87&rft.issue=14&rft.spage=5528&rft.epage=5532&rft.pages=5528-5532&rft.issn=0027-8424&rft.eissn=1091-6490&rft.coden=PNASA6&rft_id=info:doi/10.1073/pnas.87.14.5528&rft_dat=%3Cjstor_proqu%3E2355120%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=15684817&rft_id=info:pmid/2164687&rft_jstor_id=2355120&rfr_iscdi=true |