Detection Optimization Using a Transient Feature from a Metal Oxide Gas Sensor Array
Metal oxide sensors are largely studied in electronic nose field for gas detection or identification. They are robust, easy to use and have good sensitivity to many gases in the ppm range. However, the drift and low response-time of these chemical sensors constitute an important barrier in their uti...
Gespeichert in:
Veröffentlicht in: | Sensors & transducers 2014-05, Vol.27 (5), p.340-340 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 340 |
---|---|
container_issue | 5 |
container_start_page | 340 |
container_title | Sensors & transducers |
container_volume | 27 |
creator | Siadat, Maryam Losson, Etienne Ahmadou, Diaa Lumbreras, Martine |
description | Metal oxide sensors are largely studied in electronic nose field for gas detection or identification. They are robust, easy to use and have good sensitivity to many gases in the ppm range. However, the drift and low response-time of these chemical sensors constitute an important barrier in their utilization especially when low concentrations of gaseous atmospheres should be detected. To resolve these limitations many possibilities have been investigated to enhance either the sensor properties or the measurement conditions and the data analysis procedures. This paper presents the performance comparison of several features extracted from the sensor response signals. Particularly, a new transient feature corresponding to the inflexion point of the sensor response is processed. This feature is obtained during the first minutes of the gas exposure and shows a good performance, for example to detect a slight concentration variation of a gaseous atmosphere. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1567130491</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1567130491</sourcerecordid><originalsourceid>FETCH-LOGICAL-p611-f7a3020c55a5ddfde67097120fdbda392dc13a84c61b034893b6ac814d80f53a3</originalsourceid><addsrcrecordid>eNpdjk1LAzEURYMoWGr_Q8CNm4F8Z7Is1Vah0oXjurxO3kjKNFOTDKi_3kFduboc7uFyL8iMW2Eqray7JDMhmalqzfU1WeR8ZIxxZq0TbEaaeyzYljBEujuXcApf8AOvOcQ3CrRJEHPAWOgaoYwJaZeG01Q8Y4Ge7j6CR7qBTF8w5iHRZUrweUOuOugzLv5yTpr1Q7N6rLa7zdNqua3OhvOqsyCZYK3WoL3vPBrLnOWCdf7gQTrhWy6hVq3hByZV7eTBQFtz5WvWaQlyTu5-Z89peB8xl_0p5Bb7HiIOY95zbSyXTDk-qbf_1OMwpjidmywlpXTKCPkN4EZa4A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1543339462</pqid></control><display><type>article</type><title>Detection Optimization Using a Transient Feature from a Metal Oxide Gas Sensor Array</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Siadat, Maryam ; Losson, Etienne ; Ahmadou, Diaa ; Lumbreras, Martine</creator><creatorcontrib>Siadat, Maryam ; Losson, Etienne ; Ahmadou, Diaa ; Lumbreras, Martine</creatorcontrib><description>Metal oxide sensors are largely studied in electronic nose field for gas detection or identification. They are robust, easy to use and have good sensitivity to many gases in the ppm range. However, the drift and low response-time of these chemical sensors constitute an important barrier in their utilization especially when low concentrations of gaseous atmospheres should be detected. To resolve these limitations many possibilities have been investigated to enhance either the sensor properties or the measurement conditions and the data analysis procedures. This paper presents the performance comparison of several features extracted from the sensor response signals. Particularly, a new transient feature corresponding to the inflexion point of the sensor response is processed. This feature is obtained during the first minutes of the gas exposure and shows a good performance, for example to detect a slight concentration variation of a gaseous atmosphere.</description><identifier>ISSN: 2306-8515</identifier><identifier>EISSN: 1726-5479</identifier><language>eng</language><publisher>Toronto: IFSA Publishing, S.L</publisher><subject>Air flow ; Atmospheres ; Automation ; Classification ; Data analysis ; Data processing ; Discriminant analysis ; Gas flow ; Gas sensors ; Gases ; Metal oxides ; Oils & fats ; Optimization ; Principal components analysis ; Sensor arrays ; Sensors ; Statistical methods ; Transducers</subject><ispartof>Sensors & transducers, 2014-05, Vol.27 (5), p.340-340</ispartof><rights>Copyright IFSA Publishing, S.L. May 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids></links><search><creatorcontrib>Siadat, Maryam</creatorcontrib><creatorcontrib>Losson, Etienne</creatorcontrib><creatorcontrib>Ahmadou, Diaa</creatorcontrib><creatorcontrib>Lumbreras, Martine</creatorcontrib><title>Detection Optimization Using a Transient Feature from a Metal Oxide Gas Sensor Array</title><title>Sensors & transducers</title><description>Metal oxide sensors are largely studied in electronic nose field for gas detection or identification. They are robust, easy to use and have good sensitivity to many gases in the ppm range. However, the drift and low response-time of these chemical sensors constitute an important barrier in their utilization especially when low concentrations of gaseous atmospheres should be detected. To resolve these limitations many possibilities have been investigated to enhance either the sensor properties or the measurement conditions and the data analysis procedures. This paper presents the performance comparison of several features extracted from the sensor response signals. Particularly, a new transient feature corresponding to the inflexion point of the sensor response is processed. This feature is obtained during the first minutes of the gas exposure and shows a good performance, for example to detect a slight concentration variation of a gaseous atmosphere.</description><subject>Air flow</subject><subject>Atmospheres</subject><subject>Automation</subject><subject>Classification</subject><subject>Data analysis</subject><subject>Data processing</subject><subject>Discriminant analysis</subject><subject>Gas flow</subject><subject>Gas sensors</subject><subject>Gases</subject><subject>Metal oxides</subject><subject>Oils & fats</subject><subject>Optimization</subject><subject>Principal components analysis</subject><subject>Sensor arrays</subject><subject>Sensors</subject><subject>Statistical methods</subject><subject>Transducers</subject><issn>2306-8515</issn><issn>1726-5479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpdjk1LAzEURYMoWGr_Q8CNm4F8Z7Is1Vah0oXjurxO3kjKNFOTDKi_3kFduboc7uFyL8iMW2Eqray7JDMhmalqzfU1WeR8ZIxxZq0TbEaaeyzYljBEujuXcApf8AOvOcQ3CrRJEHPAWOgaoYwJaZeG01Q8Y4Ge7j6CR7qBTF8w5iHRZUrweUOuOugzLv5yTpr1Q7N6rLa7zdNqua3OhvOqsyCZYK3WoL3vPBrLnOWCdf7gQTrhWy6hVq3hByZV7eTBQFtz5WvWaQlyTu5-Z89peB8xl_0p5Bb7HiIOY95zbSyXTDk-qbf_1OMwpjidmywlpXTKCPkN4EZa4A</recordid><startdate>20140501</startdate><enddate>20140501</enddate><creator>Siadat, Maryam</creator><creator>Losson, Etienne</creator><creator>Ahmadou, Diaa</creator><creator>Lumbreras, Martine</creator><general>IFSA Publishing, S.L</general><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SP</scope><scope>7XB</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CLZPN</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>M0N</scope><scope>M2P</scope><scope>M2T</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><scope>7SR</scope><scope>JG9</scope></search><sort><creationdate>20140501</creationdate><title>Detection Optimization Using a Transient Feature from a Metal Oxide Gas Sensor Array</title><author>Siadat, Maryam ; Losson, Etienne ; Ahmadou, Diaa ; Lumbreras, Martine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p611-f7a3020c55a5ddfde67097120fdbda392dc13a84c61b034893b6ac814d80f53a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Air flow</topic><topic>Atmospheres</topic><topic>Automation</topic><topic>Classification</topic><topic>Data analysis</topic><topic>Data processing</topic><topic>Discriminant analysis</topic><topic>Gas flow</topic><topic>Gas sensors</topic><topic>Gases</topic><topic>Metal oxides</topic><topic>Oils & fats</topic><topic>Optimization</topic><topic>Principal components analysis</topic><topic>Sensor arrays</topic><topic>Sensors</topic><topic>Statistical methods</topic><topic>Transducers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Siadat, Maryam</creatorcontrib><creatorcontrib>Losson, Etienne</creatorcontrib><creatorcontrib>Ahmadou, Diaa</creatorcontrib><creatorcontrib>Lumbreras, Martine</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Electronics & Communications Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Latin America & Iberia Database</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Research Database</collection><jtitle>Sensors & transducers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Siadat, Maryam</au><au>Losson, Etienne</au><au>Ahmadou, Diaa</au><au>Lumbreras, Martine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detection Optimization Using a Transient Feature from a Metal Oxide Gas Sensor Array</atitle><jtitle>Sensors & transducers</jtitle><date>2014-05-01</date><risdate>2014</risdate><volume>27</volume><issue>5</issue><spage>340</spage><epage>340</epage><pages>340-340</pages><issn>2306-8515</issn><eissn>1726-5479</eissn><abstract>Metal oxide sensors are largely studied in electronic nose field for gas detection or identification. They are robust, easy to use and have good sensitivity to many gases in the ppm range. However, the drift and low response-time of these chemical sensors constitute an important barrier in their utilization especially when low concentrations of gaseous atmospheres should be detected. To resolve these limitations many possibilities have been investigated to enhance either the sensor properties or the measurement conditions and the data analysis procedures. This paper presents the performance comparison of several features extracted from the sensor response signals. Particularly, a new transient feature corresponding to the inflexion point of the sensor response is processed. This feature is obtained during the first minutes of the gas exposure and shows a good performance, for example to detect a slight concentration variation of a gaseous atmosphere.</abstract><cop>Toronto</cop><pub>IFSA Publishing, S.L</pub><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2306-8515 |
ispartof | Sensors & transducers, 2014-05, Vol.27 (5), p.340-340 |
issn | 2306-8515 1726-5479 |
language | eng |
recordid | cdi_proquest_miscellaneous_1567130491 |
source | EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Air flow Atmospheres Automation Classification Data analysis Data processing Discriminant analysis Gas flow Gas sensors Gases Metal oxides Oils & fats Optimization Principal components analysis Sensor arrays Sensors Statistical methods Transducers |
title | Detection Optimization Using a Transient Feature from a Metal Oxide Gas Sensor Array |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T17%3A59%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detection%20Optimization%20Using%20a%20Transient%20Feature%20from%20a%20Metal%20Oxide%20Gas%20Sensor%20Array&rft.jtitle=Sensors%20&%20transducers&rft.au=Siadat,%20Maryam&rft.date=2014-05-01&rft.volume=27&rft.issue=5&rft.spage=340&rft.epage=340&rft.pages=340-340&rft.issn=2306-8515&rft.eissn=1726-5479&rft_id=info:doi/&rft_dat=%3Cproquest%3E1567130491%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1543339462&rft_id=info:pmid/&rfr_iscdi=true |