Probabilistic Approach to Mobile Robot Localization Based on Gaussian Models of Sensors
In this paper the probabilistic approach to mobile robot localization is discussed. Generally probabilistic localization uses some type of sensors model. In this paper Gaussian model, which is the most appropriate probabilistic model of the sensors, is used. The main body of the article deal with th...
Gespeichert in:
Veröffentlicht in: | Applied Mechanics and Materials 2014-07, Vol.607 (Machine Design and Manufacturing Engineering III), p.803-810 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 810 |
---|---|
container_issue | Machine Design and Manufacturing Engineering III |
container_start_page | 803 |
container_title | Applied Mechanics and Materials |
container_volume | 607 |
creator | Hubinský, Peter Duchoň, František Babinec, Andrej Fico, Tomas Rodina, Jozef |
description | In this paper the probabilistic approach to mobile robot localization is discussed. Generally probabilistic localization uses some type of sensors model. In this paper Gaussian model, which is the most appropriate probabilistic model of the sensors, is used. The main body of the article deal with the proposal of own approach to probabilistic localization, which is inspired by Markov localization. That is why the Markov localization is described in the introduction of the article. At the end of the article several experiments with the real robot are described. Results of the experiments have proven that proposed localization is accurate, fast and reliable. |
doi_str_mv | 10.4028/www.scientific.net/AMM.607.803 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1567129870</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3390106721</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-3ec57bb1ec0a52fa4c946094a64a7eea2133cd4a9fd57b4c0e082c5fcae9e4543</originalsourceid><addsrcrecordid>eNqNkVtr3DAQRkUv0CTNfxAEQl_s6GZbfgndhjYt7NLSC30UY-2YKDjWVqNlaX59lWygIU95GjE6fPrQYexUitoIZc92u11NPuCcwxh8PWM-W6xWdSu62gr9gh3ItlVVZ6x6yY77zmqhrW6kFfLV_Z2oeq3bN-yQ6FqI1khjD9jvbykOMIQpUA6eLzabFMFf8Rz5KpY18u9xiJkvo4cp3EIOceYfgHDNy-EStkQB5sKucSIeR_4DZ4qJ3rLXI0yExw_ziP369PHnxedq-fXyy8ViWXmtbK40-qYbBoleQKNGML43regNtAY6RFBSa7820I_rwhkvUFjlm9ED9mgao4_Yu31u6f1ni5TdTSCP0wQzxi052bSdVL3tREFPnqDXcZvm0q5QjShf1ag76nxP-RSJEo5uk8INpL9OCnfnwRUP7r8HVzy44sEVD654KAHv9wE5wUwZ_dWjd54X8Q9BMJe8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1550351520</pqid></control><display><type>article</type><title>Probabilistic Approach to Mobile Robot Localization Based on Gaussian Models of Sensors</title><source>Scientific.net Journals</source><creator>Hubinský, Peter ; Duchoň, František ; Babinec, Andrej ; Fico, Tomas ; Rodina, Jozef</creator><creatorcontrib>Hubinský, Peter ; Duchoň, František ; Babinec, Andrej ; Fico, Tomas ; Rodina, Jozef</creatorcontrib><description>In this paper the probabilistic approach to mobile robot localization is discussed. Generally probabilistic localization uses some type of sensors model. In this paper Gaussian model, which is the most appropriate probabilistic model of the sensors, is used. The main body of the article deal with the proposal of own approach to probabilistic localization, which is inspired by Markov localization. That is why the Markov localization is described in the introduction of the article. At the end of the article several experiments with the real robot are described. Results of the experiments have proven that proposed localization is accurate, fast and reliable.</description><identifier>ISSN: 1660-9336</identifier><identifier>ISSN: 1662-7482</identifier><identifier>ISBN: 9783038351801</identifier><identifier>ISBN: 3038351806</identifier><identifier>EISSN: 1662-7482</identifier><identifier>DOI: 10.4028/www.scientific.net/AMM.607.803</identifier><language>eng</language><publisher>Zurich: Trans Tech Publications Ltd</publisher><subject>Gaussian ; Localization ; Markov processes ; Position (location) ; Probabilistic methods ; Probability theory ; Robots ; Sensors</subject><ispartof>Applied Mechanics and Materials, 2014-07, Vol.607 (Machine Design and Manufacturing Engineering III), p.803-810</ispartof><rights>2014 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. Jul 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c328t-3ec57bb1ec0a52fa4c946094a64a7eea2133cd4a9fd57b4c0e082c5fcae9e4543</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/3343?width=600</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Hubinský, Peter</creatorcontrib><creatorcontrib>Duchoň, František</creatorcontrib><creatorcontrib>Babinec, Andrej</creatorcontrib><creatorcontrib>Fico, Tomas</creatorcontrib><creatorcontrib>Rodina, Jozef</creatorcontrib><title>Probabilistic Approach to Mobile Robot Localization Based on Gaussian Models of Sensors</title><title>Applied Mechanics and Materials</title><description>In this paper the probabilistic approach to mobile robot localization is discussed. Generally probabilistic localization uses some type of sensors model. In this paper Gaussian model, which is the most appropriate probabilistic model of the sensors, is used. The main body of the article deal with the proposal of own approach to probabilistic localization, which is inspired by Markov localization. That is why the Markov localization is described in the introduction of the article. At the end of the article several experiments with the real robot are described. Results of the experiments have proven that proposed localization is accurate, fast and reliable.</description><subject>Gaussian</subject><subject>Localization</subject><subject>Markov processes</subject><subject>Position (location)</subject><subject>Probabilistic methods</subject><subject>Probability theory</subject><subject>Robots</subject><subject>Sensors</subject><issn>1660-9336</issn><issn>1662-7482</issn><issn>1662-7482</issn><isbn>9783038351801</isbn><isbn>3038351806</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNkVtr3DAQRkUv0CTNfxAEQl_s6GZbfgndhjYt7NLSC30UY-2YKDjWVqNlaX59lWygIU95GjE6fPrQYexUitoIZc92u11NPuCcwxh8PWM-W6xWdSu62gr9gh3ItlVVZ6x6yY77zmqhrW6kFfLV_Z2oeq3bN-yQ6FqI1khjD9jvbykOMIQpUA6eLzabFMFf8Rz5KpY18u9xiJkvo4cp3EIOceYfgHDNy-EStkQB5sKucSIeR_4DZ4qJ3rLXI0yExw_ziP369PHnxedq-fXyy8ViWXmtbK40-qYbBoleQKNGML43regNtAY6RFBSa7820I_rwhkvUFjlm9ED9mgao4_Yu31u6f1ni5TdTSCP0wQzxi052bSdVL3tREFPnqDXcZvm0q5QjShf1ag76nxP-RSJEo5uk8INpL9OCnfnwRUP7r8HVzy44sEVD654KAHv9wE5wUwZ_dWjd54X8Q9BMJe8</recordid><startdate>20140701</startdate><enddate>20140701</enddate><creator>Hubinský, Peter</creator><creator>Duchoň, František</creator><creator>Babinec, Andrej</creator><creator>Fico, Tomas</creator><creator>Rodina, Jozef</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7SP</scope><scope>L7M</scope></search><sort><creationdate>20140701</creationdate><title>Probabilistic Approach to Mobile Robot Localization Based on Gaussian Models of Sensors</title><author>Hubinský, Peter ; Duchoň, František ; Babinec, Andrej ; Fico, Tomas ; Rodina, Jozef</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-3ec57bb1ec0a52fa4c946094a64a7eea2133cd4a9fd57b4c0e082c5fcae9e4543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Gaussian</topic><topic>Localization</topic><topic>Markov processes</topic><topic>Position (location)</topic><topic>Probabilistic methods</topic><topic>Probability theory</topic><topic>Robots</topic><topic>Sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hubinský, Peter</creatorcontrib><creatorcontrib>Duchoň, František</creatorcontrib><creatorcontrib>Babinec, Andrej</creatorcontrib><creatorcontrib>Fico, Tomas</creatorcontrib><creatorcontrib>Rodina, Jozef</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Proquest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Electronics & Communications Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied Mechanics and Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hubinský, Peter</au><au>Duchoň, František</au><au>Babinec, Andrej</au><au>Fico, Tomas</au><au>Rodina, Jozef</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probabilistic Approach to Mobile Robot Localization Based on Gaussian Models of Sensors</atitle><jtitle>Applied Mechanics and Materials</jtitle><date>2014-07-01</date><risdate>2014</risdate><volume>607</volume><issue>Machine Design and Manufacturing Engineering III</issue><spage>803</spage><epage>810</epage><pages>803-810</pages><issn>1660-9336</issn><issn>1662-7482</issn><eissn>1662-7482</eissn><isbn>9783038351801</isbn><isbn>3038351806</isbn><abstract>In this paper the probabilistic approach to mobile robot localization is discussed. Generally probabilistic localization uses some type of sensors model. In this paper Gaussian model, which is the most appropriate probabilistic model of the sensors, is used. The main body of the article deal with the proposal of own approach to probabilistic localization, which is inspired by Markov localization. That is why the Markov localization is described in the introduction of the article. At the end of the article several experiments with the real robot are described. Results of the experiments have proven that proposed localization is accurate, fast and reliable.</abstract><cop>Zurich</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/AMM.607.803</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1660-9336 |
ispartof | Applied Mechanics and Materials, 2014-07, Vol.607 (Machine Design and Manufacturing Engineering III), p.803-810 |
issn | 1660-9336 1662-7482 1662-7482 |
language | eng |
recordid | cdi_proquest_miscellaneous_1567129870 |
source | Scientific.net Journals |
subjects | Gaussian Localization Markov processes Position (location) Probabilistic methods Probability theory Robots Sensors |
title | Probabilistic Approach to Mobile Robot Localization Based on Gaussian Models of Sensors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T11%3A43%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probabilistic%20Approach%20to%20Mobile%20Robot%20Localization%20Based%20on%20Gaussian%20Models%20of%20Sensors&rft.jtitle=Applied%20Mechanics%20and%20Materials&rft.au=Hubinsk%C3%BD,%20Peter&rft.date=2014-07-01&rft.volume=607&rft.issue=Machine%20Design%20and%20Manufacturing%20Engineering%20III&rft.spage=803&rft.epage=810&rft.pages=803-810&rft.issn=1660-9336&rft.eissn=1662-7482&rft.isbn=9783038351801&rft.isbn_list=3038351806&rft_id=info:doi/10.4028/www.scientific.net/AMM.607.803&rft_dat=%3Cproquest_cross%3E3390106721%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1550351520&rft_id=info:pmid/&rfr_iscdi=true |