Probabilistic Approach to Mobile Robot Localization Based on Gaussian Models of Sensors

In this paper the probabilistic approach to mobile robot localization is discussed. Generally probabilistic localization uses some type of sensors model. In this paper Gaussian model, which is the most appropriate probabilistic model of the sensors, is used. The main body of the article deal with th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Mechanics and Materials 2014-07, Vol.607 (Machine Design and Manufacturing Engineering III), p.803-810
Hauptverfasser: Hubinský, Peter, Duchoň, František, Babinec, Andrej, Fico, Tomas, Rodina, Jozef
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 810
container_issue Machine Design and Manufacturing Engineering III
container_start_page 803
container_title Applied Mechanics and Materials
container_volume 607
creator Hubinský, Peter
Duchoň, František
Babinec, Andrej
Fico, Tomas
Rodina, Jozef
description In this paper the probabilistic approach to mobile robot localization is discussed. Generally probabilistic localization uses some type of sensors model. In this paper Gaussian model, which is the most appropriate probabilistic model of the sensors, is used. The main body of the article deal with the proposal of own approach to probabilistic localization, which is inspired by Markov localization. That is why the Markov localization is described in the introduction of the article. At the end of the article several experiments with the real robot are described. Results of the experiments have proven that proposed localization is accurate, fast and reliable.
doi_str_mv 10.4028/www.scientific.net/AMM.607.803
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1567129870</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3390106721</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-3ec57bb1ec0a52fa4c946094a64a7eea2133cd4a9fd57b4c0e082c5fcae9e4543</originalsourceid><addsrcrecordid>eNqNkVtr3DAQRkUv0CTNfxAEQl_s6GZbfgndhjYt7NLSC30UY-2YKDjWVqNlaX59lWygIU95GjE6fPrQYexUitoIZc92u11NPuCcwxh8PWM-W6xWdSu62gr9gh3ItlVVZ6x6yY77zmqhrW6kFfLV_Z2oeq3bN-yQ6FqI1khjD9jvbykOMIQpUA6eLzabFMFf8Rz5KpY18u9xiJkvo4cp3EIOceYfgHDNy-EStkQB5sKucSIeR_4DZ4qJ3rLXI0yExw_ziP369PHnxedq-fXyy8ViWXmtbK40-qYbBoleQKNGML43regNtAY6RFBSa7820I_rwhkvUFjlm9ED9mgao4_Yu31u6f1ni5TdTSCP0wQzxi052bSdVL3tREFPnqDXcZvm0q5QjShf1ag76nxP-RSJEo5uk8INpL9OCnfnwRUP7r8HVzy44sEVD654KAHv9wE5wUwZ_dWjd54X8Q9BMJe8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1550351520</pqid></control><display><type>article</type><title>Probabilistic Approach to Mobile Robot Localization Based on Gaussian Models of Sensors</title><source>Scientific.net Journals</source><creator>Hubinský, Peter ; Duchoň, František ; Babinec, Andrej ; Fico, Tomas ; Rodina, Jozef</creator><creatorcontrib>Hubinský, Peter ; Duchoň, František ; Babinec, Andrej ; Fico, Tomas ; Rodina, Jozef</creatorcontrib><description>In this paper the probabilistic approach to mobile robot localization is discussed. Generally probabilistic localization uses some type of sensors model. In this paper Gaussian model, which is the most appropriate probabilistic model of the sensors, is used. The main body of the article deal with the proposal of own approach to probabilistic localization, which is inspired by Markov localization. That is why the Markov localization is described in the introduction of the article. At the end of the article several experiments with the real robot are described. Results of the experiments have proven that proposed localization is accurate, fast and reliable.</description><identifier>ISSN: 1660-9336</identifier><identifier>ISSN: 1662-7482</identifier><identifier>ISBN: 9783038351801</identifier><identifier>ISBN: 3038351806</identifier><identifier>EISSN: 1662-7482</identifier><identifier>DOI: 10.4028/www.scientific.net/AMM.607.803</identifier><language>eng</language><publisher>Zurich: Trans Tech Publications Ltd</publisher><subject>Gaussian ; Localization ; Markov processes ; Position (location) ; Probabilistic methods ; Probability theory ; Robots ; Sensors</subject><ispartof>Applied Mechanics and Materials, 2014-07, Vol.607 (Machine Design and Manufacturing Engineering III), p.803-810</ispartof><rights>2014 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. Jul 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c328t-3ec57bb1ec0a52fa4c946094a64a7eea2133cd4a9fd57b4c0e082c5fcae9e4543</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/3343?width=600</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Hubinský, Peter</creatorcontrib><creatorcontrib>Duchoň, František</creatorcontrib><creatorcontrib>Babinec, Andrej</creatorcontrib><creatorcontrib>Fico, Tomas</creatorcontrib><creatorcontrib>Rodina, Jozef</creatorcontrib><title>Probabilistic Approach to Mobile Robot Localization Based on Gaussian Models of Sensors</title><title>Applied Mechanics and Materials</title><description>In this paper the probabilistic approach to mobile robot localization is discussed. Generally probabilistic localization uses some type of sensors model. In this paper Gaussian model, which is the most appropriate probabilistic model of the sensors, is used. The main body of the article deal with the proposal of own approach to probabilistic localization, which is inspired by Markov localization. That is why the Markov localization is described in the introduction of the article. At the end of the article several experiments with the real robot are described. Results of the experiments have proven that proposed localization is accurate, fast and reliable.</description><subject>Gaussian</subject><subject>Localization</subject><subject>Markov processes</subject><subject>Position (location)</subject><subject>Probabilistic methods</subject><subject>Probability theory</subject><subject>Robots</subject><subject>Sensors</subject><issn>1660-9336</issn><issn>1662-7482</issn><issn>1662-7482</issn><isbn>9783038351801</isbn><isbn>3038351806</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNkVtr3DAQRkUv0CTNfxAEQl_s6GZbfgndhjYt7NLSC30UY-2YKDjWVqNlaX59lWygIU95GjE6fPrQYexUitoIZc92u11NPuCcwxh8PWM-W6xWdSu62gr9gh3ItlVVZ6x6yY77zmqhrW6kFfLV_Z2oeq3bN-yQ6FqI1khjD9jvbykOMIQpUA6eLzabFMFf8Rz5KpY18u9xiJkvo4cp3EIOceYfgHDNy-EStkQB5sKucSIeR_4DZ4qJ3rLXI0yExw_ziP369PHnxedq-fXyy8ViWXmtbK40-qYbBoleQKNGML43regNtAY6RFBSa7820I_rwhkvUFjlm9ED9mgao4_Yu31u6f1ni5TdTSCP0wQzxi052bSdVL3tREFPnqDXcZvm0q5QjShf1ag76nxP-RSJEo5uk8INpL9OCnfnwRUP7r8HVzy44sEVD654KAHv9wE5wUwZ_dWjd54X8Q9BMJe8</recordid><startdate>20140701</startdate><enddate>20140701</enddate><creator>Hubinský, Peter</creator><creator>Duchoň, František</creator><creator>Babinec, Andrej</creator><creator>Fico, Tomas</creator><creator>Rodina, Jozef</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7SP</scope><scope>L7M</scope></search><sort><creationdate>20140701</creationdate><title>Probabilistic Approach to Mobile Robot Localization Based on Gaussian Models of Sensors</title><author>Hubinský, Peter ; Duchoň, František ; Babinec, Andrej ; Fico, Tomas ; Rodina, Jozef</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-3ec57bb1ec0a52fa4c946094a64a7eea2133cd4a9fd57b4c0e082c5fcae9e4543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Gaussian</topic><topic>Localization</topic><topic>Markov processes</topic><topic>Position (location)</topic><topic>Probabilistic methods</topic><topic>Probability theory</topic><topic>Robots</topic><topic>Sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hubinský, Peter</creatorcontrib><creatorcontrib>Duchoň, František</creatorcontrib><creatorcontrib>Babinec, Andrej</creatorcontrib><creatorcontrib>Fico, Tomas</creatorcontrib><creatorcontrib>Rodina, Jozef</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Proquest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied Mechanics and Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hubinský, Peter</au><au>Duchoň, František</au><au>Babinec, Andrej</au><au>Fico, Tomas</au><au>Rodina, Jozef</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probabilistic Approach to Mobile Robot Localization Based on Gaussian Models of Sensors</atitle><jtitle>Applied Mechanics and Materials</jtitle><date>2014-07-01</date><risdate>2014</risdate><volume>607</volume><issue>Machine Design and Manufacturing Engineering III</issue><spage>803</spage><epage>810</epage><pages>803-810</pages><issn>1660-9336</issn><issn>1662-7482</issn><eissn>1662-7482</eissn><isbn>9783038351801</isbn><isbn>3038351806</isbn><abstract>In this paper the probabilistic approach to mobile robot localization is discussed. Generally probabilistic localization uses some type of sensors model. In this paper Gaussian model, which is the most appropriate probabilistic model of the sensors, is used. The main body of the article deal with the proposal of own approach to probabilistic localization, which is inspired by Markov localization. That is why the Markov localization is described in the introduction of the article. At the end of the article several experiments with the real robot are described. Results of the experiments have proven that proposed localization is accurate, fast and reliable.</abstract><cop>Zurich</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/AMM.607.803</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1660-9336
ispartof Applied Mechanics and Materials, 2014-07, Vol.607 (Machine Design and Manufacturing Engineering III), p.803-810
issn 1660-9336
1662-7482
1662-7482
language eng
recordid cdi_proquest_miscellaneous_1567129870
source Scientific.net Journals
subjects Gaussian
Localization
Markov processes
Position (location)
Probabilistic methods
Probability theory
Robots
Sensors
title Probabilistic Approach to Mobile Robot Localization Based on Gaussian Models of Sensors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T11%3A43%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probabilistic%20Approach%20to%20Mobile%20Robot%20Localization%20Based%20on%20Gaussian%20Models%20of%20Sensors&rft.jtitle=Applied%20Mechanics%20and%20Materials&rft.au=Hubinsk%C3%BD,%20Peter&rft.date=2014-07-01&rft.volume=607&rft.issue=Machine%20Design%20and%20Manufacturing%20Engineering%20III&rft.spage=803&rft.epage=810&rft.pages=803-810&rft.issn=1660-9336&rft.eissn=1662-7482&rft.isbn=9783038351801&rft.isbn_list=3038351806&rft_id=info:doi/10.4028/www.scientific.net/AMM.607.803&rft_dat=%3Cproquest_cross%3E3390106721%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1550351520&rft_id=info:pmid/&rfr_iscdi=true