Numerical investigation of two-phase secondary Kelvin–Helmholtz instability

Instability of the interface between two immiscible fluids representing the so-called Kelvin–Helmholtz instability problem is studied using smoothed particle hydrodynamics method. Interfacial tension is included, and the fluids are assumed to be inviscid. The time evolution of interfaces is obtained...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science Part C: Journal of Mechanical Engineering Science, 2014-08, Vol.228 (11), p.1913-1924
Hauptverfasser: Fatehi, Rouhollah, Shadloo, Mostafa Safdari, Manzari, Mehrdad T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1924
container_issue 11
container_start_page 1913
container_title Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science
container_volume 228
creator Fatehi, Rouhollah
Shadloo, Mostafa Safdari
Manzari, Mehrdad T
description Instability of the interface between two immiscible fluids representing the so-called Kelvin–Helmholtz instability problem is studied using smoothed particle hydrodynamics method. Interfacial tension is included, and the fluids are assumed to be inviscid. The time evolution of interfaces is obtained for two low Richardson numbers Ri = 0 . 01 and Ri = 0 . 1 while Bond number varies between zero and infinity. This study focuses on the effect of Bond and Richardson numbers on secondary instability of a two-dimensional shear layer. A brief theoretical discussion is given concerning the linear early time regime followed by numerical investigation of the growth of secondary waves on the main billow. Results show that for Ri = 0 . 01 , at all Bond numbers, secondary instabilities start in the early times after a perturbation is imposed, but they grow only for Bond numbers greater than 1. For Ri = 0 . 1 , however, secondary instabilities appear only at Bond numbers greater than 10. Finally, based on numerical simulations and using an energy budget analysis involving interfacial potential energy, a quantitative measure is given for the intensity of secondary instabilities using interfacial surface area.
doi_str_mv 10.1177/0954406213512630
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_proquest_miscellaneous_1567127680</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0954406213512630</sage_id><sourcerecordid>3376819271</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-52532b577aaa0f3ccbcba400b58693e76d2462daf9d9b0256d6e66570dff0c3</originalsourceid><addsrcrecordid>eNp1kbFOwzAQhi0EEqWwM0ZigSFwdmI7GasKKKLAAHvkOE7ryolLnBSViXfgDXkSHAUhVIlbTrr_-0__6RA6xXCJMedXkNI4BkZwRDFhEeyhEYEYhyRNon006uWw1w_RkXMr8EUYHaGHx65SjZbCBLreKNfqhWi1rQNbBu2bDddL4VTglLR1IZptcK_MRtdfH58zZaqlNe2797lW5NrodnuMDkphnDr56WP0fHP9Mp2F86fbu-lkHsqIszakhEYkp5wLIaCMpMxlLmKAnCYsjRRnBYkZKUSZFmkOhLKCKcYoh6IsQUZjdDFsXQqTrRtd-WCZFTqbTeZZPwOCCU8Y3WDPng_surGvnb8vq7STyhhRK9u5DFPGPcwS8OjZDrqyXVP7OzwV-2iAKfcUDJRsrHONKn8TYMj6T2S7n_CWcLA4sVB_lv7HfwNf_Igv</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1545860157</pqid></control><display><type>article</type><title>Numerical investigation of two-phase secondary Kelvin–Helmholtz instability</title><source>SAGE Complete A-Z List</source><creator>Fatehi, Rouhollah ; Shadloo, Mostafa Safdari ; Manzari, Mehrdad T</creator><creatorcontrib>Fatehi, Rouhollah ; Shadloo, Mostafa Safdari ; Manzari, Mehrdad T</creatorcontrib><description>Instability of the interface between two immiscible fluids representing the so-called Kelvin–Helmholtz instability problem is studied using smoothed particle hydrodynamics method. Interfacial tension is included, and the fluids are assumed to be inviscid. The time evolution of interfaces is obtained for two low Richardson numbers Ri = 0 . 01 and Ri = 0 . 1 while Bond number varies between zero and infinity. This study focuses on the effect of Bond and Richardson numbers on secondary instability of a two-dimensional shear layer. A brief theoretical discussion is given concerning the linear early time regime followed by numerical investigation of the growth of secondary waves on the main billow. Results show that for Ri = 0 . 01 , at all Bond numbers, secondary instabilities start in the early times after a perturbation is imposed, but they grow only for Bond numbers greater than 1. For Ri = 0 . 1 , however, secondary instabilities appear only at Bond numbers greater than 10. Finally, based on numerical simulations and using an energy budget analysis involving interfacial potential energy, a quantitative measure is given for the intensity of secondary instabilities using interfacial surface area.</description><identifier>ISSN: 0954-4062</identifier><identifier>EISSN: 2041-2983</identifier><identifier>DOI: 10.1177/0954406213512630</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Bond number ; Computational fluid dynamics ; Fluid flow ; Fluid mechanics ; Fluids ; Instability ; Kelvin-Helmholtz instability ; Mathematical models ; Mechanical engineering ; Mechanics ; Numerical analysis ; Physics ; Simulation ; Stability</subject><ispartof>Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2014-08, Vol.228 (11), p.1913-1924</ispartof><rights>IMechE 2013 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav</rights><rights>Copyright SAGE PUBLICATIONS, INC. Aug 2014</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-52532b577aaa0f3ccbcba400b58693e76d2462daf9d9b0256d6e66570dff0c3</citedby><cites>FETCH-LOGICAL-c376t-52532b577aaa0f3ccbcba400b58693e76d2462daf9d9b0256d6e66570dff0c3</cites><orcidid>0000-0002-0631-3046</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0954406213512630$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0954406213512630$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,885,21817,27922,27923,43619,43620</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02127865$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Fatehi, Rouhollah</creatorcontrib><creatorcontrib>Shadloo, Mostafa Safdari</creatorcontrib><creatorcontrib>Manzari, Mehrdad T</creatorcontrib><title>Numerical investigation of two-phase secondary Kelvin–Helmholtz instability</title><title>Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science</title><description>Instability of the interface between two immiscible fluids representing the so-called Kelvin–Helmholtz instability problem is studied using smoothed particle hydrodynamics method. Interfacial tension is included, and the fluids are assumed to be inviscid. The time evolution of interfaces is obtained for two low Richardson numbers Ri = 0 . 01 and Ri = 0 . 1 while Bond number varies between zero and infinity. This study focuses on the effect of Bond and Richardson numbers on secondary instability of a two-dimensional shear layer. A brief theoretical discussion is given concerning the linear early time regime followed by numerical investigation of the growth of secondary waves on the main billow. Results show that for Ri = 0 . 01 , at all Bond numbers, secondary instabilities start in the early times after a perturbation is imposed, but they grow only for Bond numbers greater than 1. For Ri = 0 . 1 , however, secondary instabilities appear only at Bond numbers greater than 10. Finally, based on numerical simulations and using an energy budget analysis involving interfacial potential energy, a quantitative measure is given for the intensity of secondary instabilities using interfacial surface area.</description><subject>Bond number</subject><subject>Computational fluid dynamics</subject><subject>Fluid flow</subject><subject>Fluid mechanics</subject><subject>Fluids</subject><subject>Instability</subject><subject>Kelvin-Helmholtz instability</subject><subject>Mathematical models</subject><subject>Mechanical engineering</subject><subject>Mechanics</subject><subject>Numerical analysis</subject><subject>Physics</subject><subject>Simulation</subject><subject>Stability</subject><issn>0954-4062</issn><issn>2041-2983</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp1kbFOwzAQhi0EEqWwM0ZigSFwdmI7GasKKKLAAHvkOE7ryolLnBSViXfgDXkSHAUhVIlbTrr_-0__6RA6xXCJMedXkNI4BkZwRDFhEeyhEYEYhyRNon006uWw1w_RkXMr8EUYHaGHx65SjZbCBLreKNfqhWi1rQNbBu2bDddL4VTglLR1IZptcK_MRtdfH58zZaqlNe2797lW5NrodnuMDkphnDr56WP0fHP9Mp2F86fbu-lkHsqIszakhEYkp5wLIaCMpMxlLmKAnCYsjRRnBYkZKUSZFmkOhLKCKcYoh6IsQUZjdDFsXQqTrRtd-WCZFTqbTeZZPwOCCU8Y3WDPng_surGvnb8vq7STyhhRK9u5DFPGPcwS8OjZDrqyXVP7OzwV-2iAKfcUDJRsrHONKn8TYMj6T2S7n_CWcLA4sVB_lv7HfwNf_Igv</recordid><startdate>20140801</startdate><enddate>20140801</enddate><creator>Fatehi, Rouhollah</creator><creator>Shadloo, Mostafa Safdari</creator><creator>Manzari, Mehrdad T</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-0631-3046</orcidid></search><sort><creationdate>20140801</creationdate><title>Numerical investigation of two-phase secondary Kelvin–Helmholtz instability</title><author>Fatehi, Rouhollah ; Shadloo, Mostafa Safdari ; Manzari, Mehrdad T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-52532b577aaa0f3ccbcba400b58693e76d2462daf9d9b0256d6e66570dff0c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Bond number</topic><topic>Computational fluid dynamics</topic><topic>Fluid flow</topic><topic>Fluid mechanics</topic><topic>Fluids</topic><topic>Instability</topic><topic>Kelvin-Helmholtz instability</topic><topic>Mathematical models</topic><topic>Mechanical engineering</topic><topic>Mechanics</topic><topic>Numerical analysis</topic><topic>Physics</topic><topic>Simulation</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fatehi, Rouhollah</creatorcontrib><creatorcontrib>Shadloo, Mostafa Safdari</creatorcontrib><creatorcontrib>Manzari, Mehrdad T</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fatehi, Rouhollah</au><au>Shadloo, Mostafa Safdari</au><au>Manzari, Mehrdad T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical investigation of two-phase secondary Kelvin–Helmholtz instability</atitle><jtitle>Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science</jtitle><date>2014-08-01</date><risdate>2014</risdate><volume>228</volume><issue>11</issue><spage>1913</spage><epage>1924</epage><pages>1913-1924</pages><issn>0954-4062</issn><eissn>2041-2983</eissn><abstract>Instability of the interface between two immiscible fluids representing the so-called Kelvin–Helmholtz instability problem is studied using smoothed particle hydrodynamics method. Interfacial tension is included, and the fluids are assumed to be inviscid. The time evolution of interfaces is obtained for two low Richardson numbers Ri = 0 . 01 and Ri = 0 . 1 while Bond number varies between zero and infinity. This study focuses on the effect of Bond and Richardson numbers on secondary instability of a two-dimensional shear layer. A brief theoretical discussion is given concerning the linear early time regime followed by numerical investigation of the growth of secondary waves on the main billow. Results show that for Ri = 0 . 01 , at all Bond numbers, secondary instabilities start in the early times after a perturbation is imposed, but they grow only for Bond numbers greater than 1. For Ri = 0 . 1 , however, secondary instabilities appear only at Bond numbers greater than 10. Finally, based on numerical simulations and using an energy budget analysis involving interfacial potential energy, a quantitative measure is given for the intensity of secondary instabilities using interfacial surface area.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/0954406213512630</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-0631-3046</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0954-4062
ispartof Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2014-08, Vol.228 (11), p.1913-1924
issn 0954-4062
2041-2983
language eng
recordid cdi_proquest_miscellaneous_1567127680
source SAGE Complete A-Z List
subjects Bond number
Computational fluid dynamics
Fluid flow
Fluid mechanics
Fluids
Instability
Kelvin-Helmholtz instability
Mathematical models
Mechanical engineering
Mechanics
Numerical analysis
Physics
Simulation
Stability
title Numerical investigation of two-phase secondary Kelvin–Helmholtz instability
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T04%3A37%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20investigation%20of%20two-phase%20secondary%20Kelvin%E2%80%93Helmholtz%20instability&rft.jtitle=Proceedings%20of%20the%20Institution%20of%20Mechanical%20Engineers,%20Part%20C:%20Journal%20of%20Mechanical%20Engineering%20Science&rft.au=Fatehi,%20Rouhollah&rft.date=2014-08-01&rft.volume=228&rft.issue=11&rft.spage=1913&rft.epage=1924&rft.pages=1913-1924&rft.issn=0954-4062&rft.eissn=2041-2983&rft_id=info:doi/10.1177/0954406213512630&rft_dat=%3Cproquest_hal_p%3E3376819271%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1545860157&rft_id=info:pmid/&rft_sage_id=10.1177_0954406213512630&rfr_iscdi=true