Numerical investigation of two-phase secondary Kelvin–Helmholtz instability
Instability of the interface between two immiscible fluids representing the so-called Kelvin–Helmholtz instability problem is studied using smoothed particle hydrodynamics method. Interfacial tension is included, and the fluids are assumed to be inviscid. The time evolution of interfaces is obtained...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science Part C: Journal of Mechanical Engineering Science, 2014-08, Vol.228 (11), p.1913-1924 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1924 |
---|---|
container_issue | 11 |
container_start_page | 1913 |
container_title | Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science |
container_volume | 228 |
creator | Fatehi, Rouhollah Shadloo, Mostafa Safdari Manzari, Mehrdad T |
description | Instability of the interface between two immiscible fluids representing the so-called Kelvin–Helmholtz instability problem is studied using smoothed particle hydrodynamics method. Interfacial tension is included, and the fluids are assumed to be inviscid. The time evolution of interfaces is obtained for two low Richardson numbers
Ri
=
0
.
01
and
Ri
=
0
.
1
while Bond number varies between zero and infinity. This study focuses on the effect of Bond and Richardson numbers on secondary instability of a two-dimensional shear layer. A brief theoretical discussion is given concerning the linear early time regime followed by numerical investigation of the growth of secondary waves on the main billow. Results show that for
Ri
=
0
.
01
, at all Bond numbers, secondary instabilities start in the early times after a perturbation is imposed, but they grow only for Bond numbers greater than 1. For
Ri
=
0
.
1
, however, secondary instabilities appear only at Bond numbers greater than 10. Finally, based on numerical simulations and using an energy budget analysis involving interfacial potential energy, a quantitative measure is given for the intensity of secondary instabilities using interfacial surface area. |
doi_str_mv | 10.1177/0954406213512630 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_proquest_miscellaneous_1567127680</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0954406213512630</sage_id><sourcerecordid>3376819271</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-52532b577aaa0f3ccbcba400b58693e76d2462daf9d9b0256d6e66570dff0c3</originalsourceid><addsrcrecordid>eNp1kbFOwzAQhi0EEqWwM0ZigSFwdmI7GasKKKLAAHvkOE7ryolLnBSViXfgDXkSHAUhVIlbTrr_-0__6RA6xXCJMedXkNI4BkZwRDFhEeyhEYEYhyRNon006uWw1w_RkXMr8EUYHaGHx65SjZbCBLreKNfqhWi1rQNbBu2bDddL4VTglLR1IZptcK_MRtdfH58zZaqlNe2797lW5NrodnuMDkphnDr56WP0fHP9Mp2F86fbu-lkHsqIszakhEYkp5wLIaCMpMxlLmKAnCYsjRRnBYkZKUSZFmkOhLKCKcYoh6IsQUZjdDFsXQqTrRtd-WCZFTqbTeZZPwOCCU8Y3WDPng_surGvnb8vq7STyhhRK9u5DFPGPcwS8OjZDrqyXVP7OzwV-2iAKfcUDJRsrHONKn8TYMj6T2S7n_CWcLA4sVB_lv7HfwNf_Igv</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1545860157</pqid></control><display><type>article</type><title>Numerical investigation of two-phase secondary Kelvin–Helmholtz instability</title><source>SAGE Complete A-Z List</source><creator>Fatehi, Rouhollah ; Shadloo, Mostafa Safdari ; Manzari, Mehrdad T</creator><creatorcontrib>Fatehi, Rouhollah ; Shadloo, Mostafa Safdari ; Manzari, Mehrdad T</creatorcontrib><description>Instability of the interface between two immiscible fluids representing the so-called Kelvin–Helmholtz instability problem is studied using smoothed particle hydrodynamics method. Interfacial tension is included, and the fluids are assumed to be inviscid. The time evolution of interfaces is obtained for two low Richardson numbers
Ri
=
0
.
01
and
Ri
=
0
.
1
while Bond number varies between zero and infinity. This study focuses on the effect of Bond and Richardson numbers on secondary instability of a two-dimensional shear layer. A brief theoretical discussion is given concerning the linear early time regime followed by numerical investigation of the growth of secondary waves on the main billow. Results show that for
Ri
=
0
.
01
, at all Bond numbers, secondary instabilities start in the early times after a perturbation is imposed, but they grow only for Bond numbers greater than 1. For
Ri
=
0
.
1
, however, secondary instabilities appear only at Bond numbers greater than 10. Finally, based on numerical simulations and using an energy budget analysis involving interfacial potential energy, a quantitative measure is given for the intensity of secondary instabilities using interfacial surface area.</description><identifier>ISSN: 0954-4062</identifier><identifier>EISSN: 2041-2983</identifier><identifier>DOI: 10.1177/0954406213512630</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Bond number ; Computational fluid dynamics ; Fluid flow ; Fluid mechanics ; Fluids ; Instability ; Kelvin-Helmholtz instability ; Mathematical models ; Mechanical engineering ; Mechanics ; Numerical analysis ; Physics ; Simulation ; Stability</subject><ispartof>Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2014-08, Vol.228 (11), p.1913-1924</ispartof><rights>IMechE 2013 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav</rights><rights>Copyright SAGE PUBLICATIONS, INC. Aug 2014</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-52532b577aaa0f3ccbcba400b58693e76d2462daf9d9b0256d6e66570dff0c3</citedby><cites>FETCH-LOGICAL-c376t-52532b577aaa0f3ccbcba400b58693e76d2462daf9d9b0256d6e66570dff0c3</cites><orcidid>0000-0002-0631-3046</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0954406213512630$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0954406213512630$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,885,21817,27922,27923,43619,43620</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02127865$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Fatehi, Rouhollah</creatorcontrib><creatorcontrib>Shadloo, Mostafa Safdari</creatorcontrib><creatorcontrib>Manzari, Mehrdad T</creatorcontrib><title>Numerical investigation of two-phase secondary Kelvin–Helmholtz instability</title><title>Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science</title><description>Instability of the interface between two immiscible fluids representing the so-called Kelvin–Helmholtz instability problem is studied using smoothed particle hydrodynamics method. Interfacial tension is included, and the fluids are assumed to be inviscid. The time evolution of interfaces is obtained for two low Richardson numbers
Ri
=
0
.
01
and
Ri
=
0
.
1
while Bond number varies between zero and infinity. This study focuses on the effect of Bond and Richardson numbers on secondary instability of a two-dimensional shear layer. A brief theoretical discussion is given concerning the linear early time regime followed by numerical investigation of the growth of secondary waves on the main billow. Results show that for
Ri
=
0
.
01
, at all Bond numbers, secondary instabilities start in the early times after a perturbation is imposed, but they grow only for Bond numbers greater than 1. For
Ri
=
0
.
1
, however, secondary instabilities appear only at Bond numbers greater than 10. Finally, based on numerical simulations and using an energy budget analysis involving interfacial potential energy, a quantitative measure is given for the intensity of secondary instabilities using interfacial surface area.</description><subject>Bond number</subject><subject>Computational fluid dynamics</subject><subject>Fluid flow</subject><subject>Fluid mechanics</subject><subject>Fluids</subject><subject>Instability</subject><subject>Kelvin-Helmholtz instability</subject><subject>Mathematical models</subject><subject>Mechanical engineering</subject><subject>Mechanics</subject><subject>Numerical analysis</subject><subject>Physics</subject><subject>Simulation</subject><subject>Stability</subject><issn>0954-4062</issn><issn>2041-2983</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp1kbFOwzAQhi0EEqWwM0ZigSFwdmI7GasKKKLAAHvkOE7ryolLnBSViXfgDXkSHAUhVIlbTrr_-0__6RA6xXCJMedXkNI4BkZwRDFhEeyhEYEYhyRNon006uWw1w_RkXMr8EUYHaGHx65SjZbCBLreKNfqhWi1rQNbBu2bDddL4VTglLR1IZptcK_MRtdfH58zZaqlNe2797lW5NrodnuMDkphnDr56WP0fHP9Mp2F86fbu-lkHsqIszakhEYkp5wLIaCMpMxlLmKAnCYsjRRnBYkZKUSZFmkOhLKCKcYoh6IsQUZjdDFsXQqTrRtd-WCZFTqbTeZZPwOCCU8Y3WDPng_surGvnb8vq7STyhhRK9u5DFPGPcwS8OjZDrqyXVP7OzwV-2iAKfcUDJRsrHONKn8TYMj6T2S7n_CWcLA4sVB_lv7HfwNf_Igv</recordid><startdate>20140801</startdate><enddate>20140801</enddate><creator>Fatehi, Rouhollah</creator><creator>Shadloo, Mostafa Safdari</creator><creator>Manzari, Mehrdad T</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-0631-3046</orcidid></search><sort><creationdate>20140801</creationdate><title>Numerical investigation of two-phase secondary Kelvin–Helmholtz instability</title><author>Fatehi, Rouhollah ; Shadloo, Mostafa Safdari ; Manzari, Mehrdad T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-52532b577aaa0f3ccbcba400b58693e76d2462daf9d9b0256d6e66570dff0c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Bond number</topic><topic>Computational fluid dynamics</topic><topic>Fluid flow</topic><topic>Fluid mechanics</topic><topic>Fluids</topic><topic>Instability</topic><topic>Kelvin-Helmholtz instability</topic><topic>Mathematical models</topic><topic>Mechanical engineering</topic><topic>Mechanics</topic><topic>Numerical analysis</topic><topic>Physics</topic><topic>Simulation</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fatehi, Rouhollah</creatorcontrib><creatorcontrib>Shadloo, Mostafa Safdari</creatorcontrib><creatorcontrib>Manzari, Mehrdad T</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fatehi, Rouhollah</au><au>Shadloo, Mostafa Safdari</au><au>Manzari, Mehrdad T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical investigation of two-phase secondary Kelvin–Helmholtz instability</atitle><jtitle>Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science</jtitle><date>2014-08-01</date><risdate>2014</risdate><volume>228</volume><issue>11</issue><spage>1913</spage><epage>1924</epage><pages>1913-1924</pages><issn>0954-4062</issn><eissn>2041-2983</eissn><abstract>Instability of the interface between two immiscible fluids representing the so-called Kelvin–Helmholtz instability problem is studied using smoothed particle hydrodynamics method. Interfacial tension is included, and the fluids are assumed to be inviscid. The time evolution of interfaces is obtained for two low Richardson numbers
Ri
=
0
.
01
and
Ri
=
0
.
1
while Bond number varies between zero and infinity. This study focuses on the effect of Bond and Richardson numbers on secondary instability of a two-dimensional shear layer. A brief theoretical discussion is given concerning the linear early time regime followed by numerical investigation of the growth of secondary waves on the main billow. Results show that for
Ri
=
0
.
01
, at all Bond numbers, secondary instabilities start in the early times after a perturbation is imposed, but they grow only for Bond numbers greater than 1. For
Ri
=
0
.
1
, however, secondary instabilities appear only at Bond numbers greater than 10. Finally, based on numerical simulations and using an energy budget analysis involving interfacial potential energy, a quantitative measure is given for the intensity of secondary instabilities using interfacial surface area.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/0954406213512630</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-0631-3046</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0954-4062 |
ispartof | Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2014-08, Vol.228 (11), p.1913-1924 |
issn | 0954-4062 2041-2983 |
language | eng |
recordid | cdi_proquest_miscellaneous_1567127680 |
source | SAGE Complete A-Z List |
subjects | Bond number Computational fluid dynamics Fluid flow Fluid mechanics Fluids Instability Kelvin-Helmholtz instability Mathematical models Mechanical engineering Mechanics Numerical analysis Physics Simulation Stability |
title | Numerical investigation of two-phase secondary Kelvin–Helmholtz instability |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T04%3A37%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20investigation%20of%20two-phase%20secondary%20Kelvin%E2%80%93Helmholtz%20instability&rft.jtitle=Proceedings%20of%20the%20Institution%20of%20Mechanical%20Engineers,%20Part%20C:%20Journal%20of%20Mechanical%20Engineering%20Science&rft.au=Fatehi,%20Rouhollah&rft.date=2014-08-01&rft.volume=228&rft.issue=11&rft.spage=1913&rft.epage=1924&rft.pages=1913-1924&rft.issn=0954-4062&rft.eissn=2041-2983&rft_id=info:doi/10.1177/0954406213512630&rft_dat=%3Cproquest_hal_p%3E3376819271%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1545860157&rft_id=info:pmid/&rft_sage_id=10.1177_0954406213512630&rfr_iscdi=true |