OPTIMAL STATE ESTIMATION AND ON-LINE OPTIMISATION OF A BIOCHEMICAL REACTOR
An on-line optimising control strategy involving a two level extended Kalman filter (EKF) for dynamic model identification and a functional conjugate gradient method for determining optimal operating condition is proposed and applied to a biochemical reactor. The optimiser incorporates the identifie...
Gespeichert in:
Veröffentlicht in: | Chemical and Process Engineering 2013-12, Vol.34 (4), p.449-462 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 462 |
---|---|
container_issue | 4 |
container_start_page | 449 |
container_title | Chemical and Process Engineering |
container_volume | 34 |
creator | Satya, Eswari Jujjavarapu Anand, Polumati Venkateswarlu, Chimmiri |
description | An on-line optimising control strategy involving a two level extended Kalman filter (EKF) for dynamic model identification and a functional conjugate gradient method for determining optimal operating condition is proposed and applied to a biochemical reactor. The optimiser incorporates the identified model and determines the optimal operating condition while maximising the process performance. This strategy is computationally advantageous as it involves separate estimation of states and process parameters in reduced dimensions. In addition to assisting on-line dynamic optimisation, the estimated time varying uncertain process parameter information can also be useful for continuous monitoring of the process. This strategy ensures that the biochemical reactor is operated at the optimal operation while taking care of the disturbances that are encountered during operation. The simulation results demonstrate the usefulness of the two level EKF assisted dynamic optimizer for on-line optimising control of uncertain nonlinear biochemical systems. |
doi_str_mv | 10.2478/cpe-2013-0037 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1567126006</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1567126006</sourcerecordid><originalsourceid>FETCH-LOGICAL-c345t-2fbfd9cec31fe656263eb9e265e43634e5aedc0222cf38c30d1afdfc8d2c6b433</originalsourceid><addsrcrecordid>eNptkM1Lw0AQxRdRsNQevQe8eFnd7yR4ijG1kTaRNp6XdLMrLWlTsw3S_96N8SDiXGaG-b3H8AC4xuiOMD-4VwcNCcIUIkT9MzAiFCGIQ8LPwQgRFEDBCL8EE2u3yBULMQ2DEXjJX4t0Ec29VREViZes-q1I88yLsicvz-A8zRLvG0pXwyGfepH3mObxLFmksZMukygu8uUVuDBlbfXkp4_B2zQp4hmc5889BxVl_AiJWZsqVFpRbLTgggiq16EmgmtGBWWal7pSiBCiDA0URRUuTWVUUBEl1ozSMbgdfA9t89Fpe5S7jVW6rsu9bjorMRc-JgIh4dCbP-i26dq9-05iFlJGfMq5o-BAqbaxttVGHtrNrmxPEiPZhytduLIPV_bhOv5h4D_L-qjbSr-33ckNv8z_1TFXIf0C-IB4Zw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1493427355</pqid></control><display><type>article</type><title>OPTIMAL STATE ESTIMATION AND ON-LINE OPTIMISATION OF A BIOCHEMICAL REACTOR</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Satya, Eswari Jujjavarapu ; Anand, Polumati ; Venkateswarlu, Chimmiri</creator><creatorcontrib>Satya, Eswari Jujjavarapu ; Anand, Polumati ; Venkateswarlu, Chimmiri</creatorcontrib><description>An on-line optimising control strategy involving a two level extended Kalman filter (EKF) for dynamic model identification and a functional conjugate gradient method for determining optimal operating condition is proposed and applied to a biochemical reactor. The optimiser incorporates the identified model and determines the optimal operating condition while maximising the process performance. This strategy is computationally advantageous as it involves separate estimation of states and process parameters in reduced dimensions. In addition to assisting on-line dynamic optimisation, the estimated time varying uncertain process parameter information can also be useful for continuous monitoring of the process. This strategy ensures that the biochemical reactor is operated at the optimal operation while taking care of the disturbances that are encountered during operation. The simulation results demonstrate the usefulness of the two level EKF assisted dynamic optimizer for on-line optimising control of uncertain nonlinear biochemical systems.</description><identifier>ISSN: 0208-6425</identifier><identifier>EISSN: 2300-1925</identifier><identifier>DOI: 10.2478/cpe-2013-0037</identifier><language>eng</language><publisher>Warsaw: Versita</publisher><subject>Biochemistry ; bioprocess monitoring ; control ; dynamic simulation ; Dynamical systems ; model identification ; Nonlinear dynamics ; On-line systems ; optimisation ; Optimization ; Process parameters ; Reactors ; Strategy</subject><ispartof>Chemical and Process Engineering, 2013-12, Vol.34 (4), p.449-462</ispartof><rights>Copyright Versita Dec 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Satya, Eswari Jujjavarapu</creatorcontrib><creatorcontrib>Anand, Polumati</creatorcontrib><creatorcontrib>Venkateswarlu, Chimmiri</creatorcontrib><title>OPTIMAL STATE ESTIMATION AND ON-LINE OPTIMISATION OF A BIOCHEMICAL REACTOR</title><title>Chemical and Process Engineering</title><description>An on-line optimising control strategy involving a two level extended Kalman filter (EKF) for dynamic model identification and a functional conjugate gradient method for determining optimal operating condition is proposed and applied to a biochemical reactor. The optimiser incorporates the identified model and determines the optimal operating condition while maximising the process performance. This strategy is computationally advantageous as it involves separate estimation of states and process parameters in reduced dimensions. In addition to assisting on-line dynamic optimisation, the estimated time varying uncertain process parameter information can also be useful for continuous monitoring of the process. This strategy ensures that the biochemical reactor is operated at the optimal operation while taking care of the disturbances that are encountered during operation. The simulation results demonstrate the usefulness of the two level EKF assisted dynamic optimizer for on-line optimising control of uncertain nonlinear biochemical systems.</description><subject>Biochemistry</subject><subject>bioprocess monitoring</subject><subject>control</subject><subject>dynamic simulation</subject><subject>Dynamical systems</subject><subject>model identification</subject><subject>Nonlinear dynamics</subject><subject>On-line systems</subject><subject>optimisation</subject><subject>Optimization</subject><subject>Process parameters</subject><subject>Reactors</subject><subject>Strategy</subject><issn>0208-6425</issn><issn>2300-1925</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNptkM1Lw0AQxRdRsNQevQe8eFnd7yR4ijG1kTaRNp6XdLMrLWlTsw3S_96N8SDiXGaG-b3H8AC4xuiOMD-4VwcNCcIUIkT9MzAiFCGIQ8LPwQgRFEDBCL8EE2u3yBULMQ2DEXjJX4t0Ec29VREViZes-q1I88yLsicvz-A8zRLvG0pXwyGfepH3mObxLFmksZMukygu8uUVuDBlbfXkp4_B2zQp4hmc5889BxVl_AiJWZsqVFpRbLTgggiq16EmgmtGBWWal7pSiBCiDA0URRUuTWVUUBEl1ozSMbgdfA9t89Fpe5S7jVW6rsu9bjorMRc-JgIh4dCbP-i26dq9-05iFlJGfMq5o-BAqbaxttVGHtrNrmxPEiPZhytduLIPV_bhOv5h4D_L-qjbSr-33ckNv8z_1TFXIf0C-IB4Zw</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Satya, Eswari Jujjavarapu</creator><creator>Anand, Polumati</creator><creator>Venkateswarlu, Chimmiri</creator><general>Versita</general><general>Polish Academy of Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20131201</creationdate><title>OPTIMAL STATE ESTIMATION AND ON-LINE OPTIMISATION OF A BIOCHEMICAL REACTOR</title><author>Satya, Eswari Jujjavarapu ; Anand, Polumati ; Venkateswarlu, Chimmiri</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c345t-2fbfd9cec31fe656263eb9e265e43634e5aedc0222cf38c30d1afdfc8d2c6b433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Biochemistry</topic><topic>bioprocess monitoring</topic><topic>control</topic><topic>dynamic simulation</topic><topic>Dynamical systems</topic><topic>model identification</topic><topic>Nonlinear dynamics</topic><topic>On-line systems</topic><topic>optimisation</topic><topic>Optimization</topic><topic>Process parameters</topic><topic>Reactors</topic><topic>Strategy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Satya, Eswari Jujjavarapu</creatorcontrib><creatorcontrib>Anand, Polumati</creatorcontrib><creatorcontrib>Venkateswarlu, Chimmiri</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Chemical and Process Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Satya, Eswari Jujjavarapu</au><au>Anand, Polumati</au><au>Venkateswarlu, Chimmiri</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>OPTIMAL STATE ESTIMATION AND ON-LINE OPTIMISATION OF A BIOCHEMICAL REACTOR</atitle><jtitle>Chemical and Process Engineering</jtitle><date>2013-12-01</date><risdate>2013</risdate><volume>34</volume><issue>4</issue><spage>449</spage><epage>462</epage><pages>449-462</pages><issn>0208-6425</issn><eissn>2300-1925</eissn><abstract>An on-line optimising control strategy involving a two level extended Kalman filter (EKF) for dynamic model identification and a functional conjugate gradient method for determining optimal operating condition is proposed and applied to a biochemical reactor. The optimiser incorporates the identified model and determines the optimal operating condition while maximising the process performance. This strategy is computationally advantageous as it involves separate estimation of states and process parameters in reduced dimensions. In addition to assisting on-line dynamic optimisation, the estimated time varying uncertain process parameter information can also be useful for continuous monitoring of the process. This strategy ensures that the biochemical reactor is operated at the optimal operation while taking care of the disturbances that are encountered during operation. The simulation results demonstrate the usefulness of the two level EKF assisted dynamic optimizer for on-line optimising control of uncertain nonlinear biochemical systems.</abstract><cop>Warsaw</cop><pub>Versita</pub><doi>10.2478/cpe-2013-0037</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0208-6425 |
ispartof | Chemical and Process Engineering, 2013-12, Vol.34 (4), p.449-462 |
issn | 0208-6425 2300-1925 |
language | eng |
recordid | cdi_proquest_miscellaneous_1567126006 |
source | EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Biochemistry bioprocess monitoring control dynamic simulation Dynamical systems model identification Nonlinear dynamics On-line systems optimisation Optimization Process parameters Reactors Strategy |
title | OPTIMAL STATE ESTIMATION AND ON-LINE OPTIMISATION OF A BIOCHEMICAL REACTOR |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T14%3A00%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=OPTIMAL%20STATE%20ESTIMATION%20AND%20ON-LINE%20OPTIMISATION%20OF%20A%20BIOCHEMICAL%20REACTOR&rft.jtitle=Chemical%20and%20Process%20Engineering&rft.au=Satya,%20Eswari%20Jujjavarapu&rft.date=2013-12-01&rft.volume=34&rft.issue=4&rft.spage=449&rft.epage=462&rft.pages=449-462&rft.issn=0208-6425&rft.eissn=2300-1925&rft_id=info:doi/10.2478/cpe-2013-0037&rft_dat=%3Cproquest_cross%3E1567126006%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1493427355&rft_id=info:pmid/&rfr_iscdi=true |