OPTIMAL STATE ESTIMATION AND ON-LINE OPTIMISATION OF A BIOCHEMICAL REACTOR

An on-line optimising control strategy involving a two level extended Kalman filter (EKF) for dynamic model identification and a functional conjugate gradient method for determining optimal operating condition is proposed and applied to a biochemical reactor. The optimiser incorporates the identifie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical and Process Engineering 2013-12, Vol.34 (4), p.449-462
Hauptverfasser: Satya, Eswari Jujjavarapu, Anand, Polumati, Venkateswarlu, Chimmiri
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 462
container_issue 4
container_start_page 449
container_title Chemical and Process Engineering
container_volume 34
creator Satya, Eswari Jujjavarapu
Anand, Polumati
Venkateswarlu, Chimmiri
description An on-line optimising control strategy involving a two level extended Kalman filter (EKF) for dynamic model identification and a functional conjugate gradient method for determining optimal operating condition is proposed and applied to a biochemical reactor. The optimiser incorporates the identified model and determines the optimal operating condition while maximising the process performance. This strategy is computationally advantageous as it involves separate estimation of states and process parameters in reduced dimensions. In addition to assisting on-line dynamic optimisation, the estimated time varying uncertain process parameter information can also be useful for continuous monitoring of the process. This strategy ensures that the biochemical reactor is operated at the optimal operation while taking care of the disturbances that are encountered during operation. The simulation results demonstrate the usefulness of the two level EKF assisted dynamic optimizer for on-line optimising control of uncertain nonlinear biochemical systems.
doi_str_mv 10.2478/cpe-2013-0037
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1567126006</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1567126006</sourcerecordid><originalsourceid>FETCH-LOGICAL-c345t-2fbfd9cec31fe656263eb9e265e43634e5aedc0222cf38c30d1afdfc8d2c6b433</originalsourceid><addsrcrecordid>eNptkM1Lw0AQxRdRsNQevQe8eFnd7yR4ijG1kTaRNp6XdLMrLWlTsw3S_96N8SDiXGaG-b3H8AC4xuiOMD-4VwcNCcIUIkT9MzAiFCGIQ8LPwQgRFEDBCL8EE2u3yBULMQ2DEXjJX4t0Ec29VREViZes-q1I88yLsicvz-A8zRLvG0pXwyGfepH3mObxLFmksZMukygu8uUVuDBlbfXkp4_B2zQp4hmc5889BxVl_AiJWZsqVFpRbLTgggiq16EmgmtGBWWal7pSiBCiDA0URRUuTWVUUBEl1ozSMbgdfA9t89Fpe5S7jVW6rsu9bjorMRc-JgIh4dCbP-i26dq9-05iFlJGfMq5o-BAqbaxttVGHtrNrmxPEiPZhytduLIPV_bhOv5h4D_L-qjbSr-33ckNv8z_1TFXIf0C-IB4Zw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1493427355</pqid></control><display><type>article</type><title>OPTIMAL STATE ESTIMATION AND ON-LINE OPTIMISATION OF A BIOCHEMICAL REACTOR</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Satya, Eswari Jujjavarapu ; Anand, Polumati ; Venkateswarlu, Chimmiri</creator><creatorcontrib>Satya, Eswari Jujjavarapu ; Anand, Polumati ; Venkateswarlu, Chimmiri</creatorcontrib><description>An on-line optimising control strategy involving a two level extended Kalman filter (EKF) for dynamic model identification and a functional conjugate gradient method for determining optimal operating condition is proposed and applied to a biochemical reactor. The optimiser incorporates the identified model and determines the optimal operating condition while maximising the process performance. This strategy is computationally advantageous as it involves separate estimation of states and process parameters in reduced dimensions. In addition to assisting on-line dynamic optimisation, the estimated time varying uncertain process parameter information can also be useful for continuous monitoring of the process. This strategy ensures that the biochemical reactor is operated at the optimal operation while taking care of the disturbances that are encountered during operation. The simulation results demonstrate the usefulness of the two level EKF assisted dynamic optimizer for on-line optimising control of uncertain nonlinear biochemical systems.</description><identifier>ISSN: 0208-6425</identifier><identifier>EISSN: 2300-1925</identifier><identifier>DOI: 10.2478/cpe-2013-0037</identifier><language>eng</language><publisher>Warsaw: Versita</publisher><subject>Biochemistry ; bioprocess monitoring ; control ; dynamic simulation ; Dynamical systems ; model identification ; Nonlinear dynamics ; On-line systems ; optimisation ; Optimization ; Process parameters ; Reactors ; Strategy</subject><ispartof>Chemical and Process Engineering, 2013-12, Vol.34 (4), p.449-462</ispartof><rights>Copyright Versita Dec 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Satya, Eswari Jujjavarapu</creatorcontrib><creatorcontrib>Anand, Polumati</creatorcontrib><creatorcontrib>Venkateswarlu, Chimmiri</creatorcontrib><title>OPTIMAL STATE ESTIMATION AND ON-LINE OPTIMISATION OF A BIOCHEMICAL REACTOR</title><title>Chemical and Process Engineering</title><description>An on-line optimising control strategy involving a two level extended Kalman filter (EKF) for dynamic model identification and a functional conjugate gradient method for determining optimal operating condition is proposed and applied to a biochemical reactor. The optimiser incorporates the identified model and determines the optimal operating condition while maximising the process performance. This strategy is computationally advantageous as it involves separate estimation of states and process parameters in reduced dimensions. In addition to assisting on-line dynamic optimisation, the estimated time varying uncertain process parameter information can also be useful for continuous monitoring of the process. This strategy ensures that the biochemical reactor is operated at the optimal operation while taking care of the disturbances that are encountered during operation. The simulation results demonstrate the usefulness of the two level EKF assisted dynamic optimizer for on-line optimising control of uncertain nonlinear biochemical systems.</description><subject>Biochemistry</subject><subject>bioprocess monitoring</subject><subject>control</subject><subject>dynamic simulation</subject><subject>Dynamical systems</subject><subject>model identification</subject><subject>Nonlinear dynamics</subject><subject>On-line systems</subject><subject>optimisation</subject><subject>Optimization</subject><subject>Process parameters</subject><subject>Reactors</subject><subject>Strategy</subject><issn>0208-6425</issn><issn>2300-1925</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNptkM1Lw0AQxRdRsNQevQe8eFnd7yR4ijG1kTaRNp6XdLMrLWlTsw3S_96N8SDiXGaG-b3H8AC4xuiOMD-4VwcNCcIUIkT9MzAiFCGIQ8LPwQgRFEDBCL8EE2u3yBULMQ2DEXjJX4t0Ec29VREViZes-q1I88yLsicvz-A8zRLvG0pXwyGfepH3mObxLFmksZMukygu8uUVuDBlbfXkp4_B2zQp4hmc5889BxVl_AiJWZsqVFpRbLTgggiq16EmgmtGBWWal7pSiBCiDA0URRUuTWVUUBEl1ozSMbgdfA9t89Fpe5S7jVW6rsu9bjorMRc-JgIh4dCbP-i26dq9-05iFlJGfMq5o-BAqbaxttVGHtrNrmxPEiPZhytduLIPV_bhOv5h4D_L-qjbSr-33ckNv8z_1TFXIf0C-IB4Zw</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Satya, Eswari Jujjavarapu</creator><creator>Anand, Polumati</creator><creator>Venkateswarlu, Chimmiri</creator><general>Versita</general><general>Polish Academy of Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20131201</creationdate><title>OPTIMAL STATE ESTIMATION AND ON-LINE OPTIMISATION OF A BIOCHEMICAL REACTOR</title><author>Satya, Eswari Jujjavarapu ; Anand, Polumati ; Venkateswarlu, Chimmiri</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c345t-2fbfd9cec31fe656263eb9e265e43634e5aedc0222cf38c30d1afdfc8d2c6b433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Biochemistry</topic><topic>bioprocess monitoring</topic><topic>control</topic><topic>dynamic simulation</topic><topic>Dynamical systems</topic><topic>model identification</topic><topic>Nonlinear dynamics</topic><topic>On-line systems</topic><topic>optimisation</topic><topic>Optimization</topic><topic>Process parameters</topic><topic>Reactors</topic><topic>Strategy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Satya, Eswari Jujjavarapu</creatorcontrib><creatorcontrib>Anand, Polumati</creatorcontrib><creatorcontrib>Venkateswarlu, Chimmiri</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Chemical and Process Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Satya, Eswari Jujjavarapu</au><au>Anand, Polumati</au><au>Venkateswarlu, Chimmiri</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>OPTIMAL STATE ESTIMATION AND ON-LINE OPTIMISATION OF A BIOCHEMICAL REACTOR</atitle><jtitle>Chemical and Process Engineering</jtitle><date>2013-12-01</date><risdate>2013</risdate><volume>34</volume><issue>4</issue><spage>449</spage><epage>462</epage><pages>449-462</pages><issn>0208-6425</issn><eissn>2300-1925</eissn><abstract>An on-line optimising control strategy involving a two level extended Kalman filter (EKF) for dynamic model identification and a functional conjugate gradient method for determining optimal operating condition is proposed and applied to a biochemical reactor. The optimiser incorporates the identified model and determines the optimal operating condition while maximising the process performance. This strategy is computationally advantageous as it involves separate estimation of states and process parameters in reduced dimensions. In addition to assisting on-line dynamic optimisation, the estimated time varying uncertain process parameter information can also be useful for continuous monitoring of the process. This strategy ensures that the biochemical reactor is operated at the optimal operation while taking care of the disturbances that are encountered during operation. The simulation results demonstrate the usefulness of the two level EKF assisted dynamic optimizer for on-line optimising control of uncertain nonlinear biochemical systems.</abstract><cop>Warsaw</cop><pub>Versita</pub><doi>10.2478/cpe-2013-0037</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0208-6425
ispartof Chemical and Process Engineering, 2013-12, Vol.34 (4), p.449-462
issn 0208-6425
2300-1925
language eng
recordid cdi_proquest_miscellaneous_1567126006
source EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Biochemistry
bioprocess monitoring
control
dynamic simulation
Dynamical systems
model identification
Nonlinear dynamics
On-line systems
optimisation
Optimization
Process parameters
Reactors
Strategy
title OPTIMAL STATE ESTIMATION AND ON-LINE OPTIMISATION OF A BIOCHEMICAL REACTOR
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T14%3A00%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=OPTIMAL%20STATE%20ESTIMATION%20AND%20ON-LINE%20OPTIMISATION%20OF%20A%20BIOCHEMICAL%20REACTOR&rft.jtitle=Chemical%20and%20Process%20Engineering&rft.au=Satya,%20Eswari%20Jujjavarapu&rft.date=2013-12-01&rft.volume=34&rft.issue=4&rft.spage=449&rft.epage=462&rft.pages=449-462&rft.issn=0208-6425&rft.eissn=2300-1925&rft_id=info:doi/10.2478/cpe-2013-0037&rft_dat=%3Cproquest_cross%3E1567126006%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1493427355&rft_id=info:pmid/&rfr_iscdi=true