Efficient Directed Energy Transfer through Size-Gradient Nanocrystal Layers into Silicon Substrates

Spectroscopic evidence of directed excitonic energy transfer (ET) is presented through size‐gradient CdSe/ZnS nanocrystal quantum dot (NQD) layers into an underlying Si substrate. NQD monolayers are chemically grafted on hydrogen‐terminated Si surfaces via a self‐assembled monolayer of amine modifie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2014-08, Vol.24 (31), p.5002-5010
Hauptverfasser: De Benedetti, William J. I., Nimmo, Michael T., Rupich, Sara M., Caillard, Louis M., Gartstein, Yuri N., Chabal, Yves J., Malko, Anton V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5010
container_issue 31
container_start_page 5002
container_title Advanced functional materials
container_volume 24
creator De Benedetti, William J. I.
Nimmo, Michael T.
Rupich, Sara M.
Caillard, Louis M.
Gartstein, Yuri N.
Chabal, Yves J.
Malko, Anton V.
description Spectroscopic evidence of directed excitonic energy transfer (ET) is presented through size‐gradient CdSe/ZnS nanocrystal quantum dot (NQD) layers into an underlying Si substrate. NQD monolayers are chemically grafted on hydrogen‐terminated Si surfaces via a self‐assembled monolayer of amine modified carboxy‐alkyl chains. Subsequent NQD monolayers are linked with short alkyldiamines. The linking approach enables accurate positioning and enhanced passivation of the layers. Two different sizes of NQDs (energy donors emitting at 545 nm, and energy acceptors emitting at 585 nm) are used in comparing different monolayer and bilayer samples grafted on SiO2 and oxide‐free Si surfaces via time‐resolved photoluminescence measurements. The overall efficiency of ET from the top‐layer donor NQDs into Si is estimated to approach ≈90% through a combination of different energy relaxation pathways. These include sequential ET through the intermediate acceptor layer realized mainly via the non‐radiative mechanism and direct ET into the Si substrate realized by means of the radiative coupling. The experimental observations are quantitatively rationalized by the theoretical modeling without introducing any extraneous energy scavenging processes. This indicates that the linker‐assisted fabrication enables the construction of defect‐free, bandgap‐gradient multilayer NQD/Si hybrid structures suitable for thin‐film photovoltaic applications. Size‐gradient CdSe/ZnS nanocrystal bilayer structures are fabricated on Si substrates in a layer‐by‐layer architecture with assistance of chemical linkers. Efficient energy transfer is demonstrated from photoexcited nanocrystals into the substrate as achieved via cascaded non‐radiative and direct radiative couplings. This supports the concept of excitonic sensitization of ultrathin Si layers from the adjacent nanocrystal assemblies for photovoltaic applications.
doi_str_mv 10.1002/adfm.201400667
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1567120521</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1567120521</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3607-6c69005da680e7c0e3c38fe4638ccfaef9b0a8572cf329c58215cb65d0f24e1c3</originalsourceid><addsrcrecordid>eNqFkD1PwzAQQCMEEp8rc0aWlLOd2MmIoC1IpQx8bpZ7OYMhTcB2BeHXUyiq2JjupHvvhpckhwwGDIAfm9rOBxxYDiCl2kh2mGQyE8DLzfXOHraT3RCeAZhSIt9JcGitQ0dtTM-cJ4xUp8OW_GOf3njTBks-jU--Wzw-pdfuk7KxN_UPPjVth74P0TTpxPTkQ-ra2C2pxmHXpteLWYjeRAr7yZY1TaCD37mX3I6GN6fn2eRqfHF6MslQSFCZRFkBFLWRJZBCIIGitJRLUSJaQ7aagSkLxdEKXmFRclbgTBY1WJ4TQ7GXHK3-vvrubUEh6rkLSE1jWuoWQbNCKsah4GyJDlYo-i4ET1a_ejc3vtcM9HdN_V1Tr2suhWolvLuG-n9ofXI2uvzrZivXhUgfa9f4F728qkLfT8c6V3ej-7vxVFfiC47Micc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1567120521</pqid></control><display><type>article</type><title>Efficient Directed Energy Transfer through Size-Gradient Nanocrystal Layers into Silicon Substrates</title><source>Wiley Journals</source><creator>De Benedetti, William J. I. ; Nimmo, Michael T. ; Rupich, Sara M. ; Caillard, Louis M. ; Gartstein, Yuri N. ; Chabal, Yves J. ; Malko, Anton V.</creator><creatorcontrib>De Benedetti, William J. I. ; Nimmo, Michael T. ; Rupich, Sara M. ; Caillard, Louis M. ; Gartstein, Yuri N. ; Chabal, Yves J. ; Malko, Anton V.</creatorcontrib><description>Spectroscopic evidence of directed excitonic energy transfer (ET) is presented through size‐gradient CdSe/ZnS nanocrystal quantum dot (NQD) layers into an underlying Si substrate. NQD monolayers are chemically grafted on hydrogen‐terminated Si surfaces via a self‐assembled monolayer of amine modified carboxy‐alkyl chains. Subsequent NQD monolayers are linked with short alkyldiamines. The linking approach enables accurate positioning and enhanced passivation of the layers. Two different sizes of NQDs (energy donors emitting at 545 nm, and energy acceptors emitting at 585 nm) are used in comparing different monolayer and bilayer samples grafted on SiO2 and oxide‐free Si surfaces via time‐resolved photoluminescence measurements. The overall efficiency of ET from the top‐layer donor NQDs into Si is estimated to approach ≈90% through a combination of different energy relaxation pathways. These include sequential ET through the intermediate acceptor layer realized mainly via the non‐radiative mechanism and direct ET into the Si substrate realized by means of the radiative coupling. The experimental observations are quantitatively rationalized by the theoretical modeling without introducing any extraneous energy scavenging processes. This indicates that the linker‐assisted fabrication enables the construction of defect‐free, bandgap‐gradient multilayer NQD/Si hybrid structures suitable for thin‐film photovoltaic applications. Size‐gradient CdSe/ZnS nanocrystal bilayer structures are fabricated on Si substrates in a layer‐by‐layer architecture with assistance of chemical linkers. Efficient energy transfer is demonstrated from photoexcited nanocrystals into the substrate as achieved via cascaded non‐radiative and direct radiative couplings. This supports the concept of excitonic sensitization of ultrathin Si layers from the adjacent nanocrystal assemblies for photovoltaic applications.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201400667</identifier><language>eng</language><publisher>Blackwell Publishing Ltd</publisher><subject>Cadmium selenides ; Energy transfer ; hybrid nanostructures ; Intermetallics ; Monolayers ; Nanocrystals ; semiconductor nanocrystals ; Silicon ; Silicon substrates ; Solar cells</subject><ispartof>Advanced functional materials, 2014-08, Vol.24 (31), p.5002-5010</ispartof><rights>2014 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3607-6c69005da680e7c0e3c38fe4638ccfaef9b0a8572cf329c58215cb65d0f24e1c3</citedby><cites>FETCH-LOGICAL-c3607-6c69005da680e7c0e3c38fe4638ccfaef9b0a8572cf329c58215cb65d0f24e1c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.201400667$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.201400667$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>De Benedetti, William J. I.</creatorcontrib><creatorcontrib>Nimmo, Michael T.</creatorcontrib><creatorcontrib>Rupich, Sara M.</creatorcontrib><creatorcontrib>Caillard, Louis M.</creatorcontrib><creatorcontrib>Gartstein, Yuri N.</creatorcontrib><creatorcontrib>Chabal, Yves J.</creatorcontrib><creatorcontrib>Malko, Anton V.</creatorcontrib><title>Efficient Directed Energy Transfer through Size-Gradient Nanocrystal Layers into Silicon Substrates</title><title>Advanced functional materials</title><addtitle>Adv. Funct. Mater</addtitle><description>Spectroscopic evidence of directed excitonic energy transfer (ET) is presented through size‐gradient CdSe/ZnS nanocrystal quantum dot (NQD) layers into an underlying Si substrate. NQD monolayers are chemically grafted on hydrogen‐terminated Si surfaces via a self‐assembled monolayer of amine modified carboxy‐alkyl chains. Subsequent NQD monolayers are linked with short alkyldiamines. The linking approach enables accurate positioning and enhanced passivation of the layers. Two different sizes of NQDs (energy donors emitting at 545 nm, and energy acceptors emitting at 585 nm) are used in comparing different monolayer and bilayer samples grafted on SiO2 and oxide‐free Si surfaces via time‐resolved photoluminescence measurements. The overall efficiency of ET from the top‐layer donor NQDs into Si is estimated to approach ≈90% through a combination of different energy relaxation pathways. These include sequential ET through the intermediate acceptor layer realized mainly via the non‐radiative mechanism and direct ET into the Si substrate realized by means of the radiative coupling. The experimental observations are quantitatively rationalized by the theoretical modeling without introducing any extraneous energy scavenging processes. This indicates that the linker‐assisted fabrication enables the construction of defect‐free, bandgap‐gradient multilayer NQD/Si hybrid structures suitable for thin‐film photovoltaic applications. Size‐gradient CdSe/ZnS nanocrystal bilayer structures are fabricated on Si substrates in a layer‐by‐layer architecture with assistance of chemical linkers. Efficient energy transfer is demonstrated from photoexcited nanocrystals into the substrate as achieved via cascaded non‐radiative and direct radiative couplings. This supports the concept of excitonic sensitization of ultrathin Si layers from the adjacent nanocrystal assemblies for photovoltaic applications.</description><subject>Cadmium selenides</subject><subject>Energy transfer</subject><subject>hybrid nanostructures</subject><subject>Intermetallics</subject><subject>Monolayers</subject><subject>Nanocrystals</subject><subject>semiconductor nanocrystals</subject><subject>Silicon</subject><subject>Silicon substrates</subject><subject>Solar cells</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAQQCMEEp8rc0aWlLOd2MmIoC1IpQx8bpZ7OYMhTcB2BeHXUyiq2JjupHvvhpckhwwGDIAfm9rOBxxYDiCl2kh2mGQyE8DLzfXOHraT3RCeAZhSIt9JcGitQ0dtTM-cJ4xUp8OW_GOf3njTBks-jU--Wzw-pdfuk7KxN_UPPjVth74P0TTpxPTkQ-ra2C2pxmHXpteLWYjeRAr7yZY1TaCD37mX3I6GN6fn2eRqfHF6MslQSFCZRFkBFLWRJZBCIIGitJRLUSJaQ7aagSkLxdEKXmFRclbgTBY1WJ4TQ7GXHK3-vvrubUEh6rkLSE1jWuoWQbNCKsah4GyJDlYo-i4ET1a_ejc3vtcM9HdN_V1Tr2suhWolvLuG-n9ofXI2uvzrZivXhUgfa9f4F728qkLfT8c6V3ej-7vxVFfiC47Micc</recordid><startdate>20140820</startdate><enddate>20140820</enddate><creator>De Benedetti, William J. I.</creator><creator>Nimmo, Michael T.</creator><creator>Rupich, Sara M.</creator><creator>Caillard, Louis M.</creator><creator>Gartstein, Yuri N.</creator><creator>Chabal, Yves J.</creator><creator>Malko, Anton V.</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20140820</creationdate><title>Efficient Directed Energy Transfer through Size-Gradient Nanocrystal Layers into Silicon Substrates</title><author>De Benedetti, William J. I. ; Nimmo, Michael T. ; Rupich, Sara M. ; Caillard, Louis M. ; Gartstein, Yuri N. ; Chabal, Yves J. ; Malko, Anton V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3607-6c69005da680e7c0e3c38fe4638ccfaef9b0a8572cf329c58215cb65d0f24e1c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Cadmium selenides</topic><topic>Energy transfer</topic><topic>hybrid nanostructures</topic><topic>Intermetallics</topic><topic>Monolayers</topic><topic>Nanocrystals</topic><topic>semiconductor nanocrystals</topic><topic>Silicon</topic><topic>Silicon substrates</topic><topic>Solar cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De Benedetti, William J. I.</creatorcontrib><creatorcontrib>Nimmo, Michael T.</creatorcontrib><creatorcontrib>Rupich, Sara M.</creatorcontrib><creatorcontrib>Caillard, Louis M.</creatorcontrib><creatorcontrib>Gartstein, Yuri N.</creatorcontrib><creatorcontrib>Chabal, Yves J.</creatorcontrib><creatorcontrib>Malko, Anton V.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>De Benedetti, William J. I.</au><au>Nimmo, Michael T.</au><au>Rupich, Sara M.</au><au>Caillard, Louis M.</au><au>Gartstein, Yuri N.</au><au>Chabal, Yves J.</au><au>Malko, Anton V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient Directed Energy Transfer through Size-Gradient Nanocrystal Layers into Silicon Substrates</atitle><jtitle>Advanced functional materials</jtitle><addtitle>Adv. Funct. Mater</addtitle><date>2014-08-20</date><risdate>2014</risdate><volume>24</volume><issue>31</issue><spage>5002</spage><epage>5010</epage><pages>5002-5010</pages><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Spectroscopic evidence of directed excitonic energy transfer (ET) is presented through size‐gradient CdSe/ZnS nanocrystal quantum dot (NQD) layers into an underlying Si substrate. NQD monolayers are chemically grafted on hydrogen‐terminated Si surfaces via a self‐assembled monolayer of amine modified carboxy‐alkyl chains. Subsequent NQD monolayers are linked with short alkyldiamines. The linking approach enables accurate positioning and enhanced passivation of the layers. Two different sizes of NQDs (energy donors emitting at 545 nm, and energy acceptors emitting at 585 nm) are used in comparing different monolayer and bilayer samples grafted on SiO2 and oxide‐free Si surfaces via time‐resolved photoluminescence measurements. The overall efficiency of ET from the top‐layer donor NQDs into Si is estimated to approach ≈90% through a combination of different energy relaxation pathways. These include sequential ET through the intermediate acceptor layer realized mainly via the non‐radiative mechanism and direct ET into the Si substrate realized by means of the radiative coupling. The experimental observations are quantitatively rationalized by the theoretical modeling without introducing any extraneous energy scavenging processes. This indicates that the linker‐assisted fabrication enables the construction of defect‐free, bandgap‐gradient multilayer NQD/Si hybrid structures suitable for thin‐film photovoltaic applications. Size‐gradient CdSe/ZnS nanocrystal bilayer structures are fabricated on Si substrates in a layer‐by‐layer architecture with assistance of chemical linkers. Efficient energy transfer is demonstrated from photoexcited nanocrystals into the substrate as achieved via cascaded non‐radiative and direct radiative couplings. This supports the concept of excitonic sensitization of ultrathin Si layers from the adjacent nanocrystal assemblies for photovoltaic applications.</abstract><pub>Blackwell Publishing Ltd</pub><doi>10.1002/adfm.201400667</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2014-08, Vol.24 (31), p.5002-5010
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_miscellaneous_1567120521
source Wiley Journals
subjects Cadmium selenides
Energy transfer
hybrid nanostructures
Intermetallics
Monolayers
Nanocrystals
semiconductor nanocrystals
Silicon
Silicon substrates
Solar cells
title Efficient Directed Energy Transfer through Size-Gradient Nanocrystal Layers into Silicon Substrates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T12%3A39%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20Directed%20Energy%20Transfer%20through%20Size-Gradient%20Nanocrystal%20Layers%20into%20Silicon%20Substrates&rft.jtitle=Advanced%20functional%20materials&rft.au=De%20Benedetti,%20William%20J.%20I.&rft.date=2014-08-20&rft.volume=24&rft.issue=31&rft.spage=5002&rft.epage=5010&rft.pages=5002-5010&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201400667&rft_dat=%3Cproquest_cross%3E1567120521%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1567120521&rft_id=info:pmid/&rfr_iscdi=true