Efficient Directed Energy Transfer through Size-Gradient Nanocrystal Layers into Silicon Substrates
Spectroscopic evidence of directed excitonic energy transfer (ET) is presented through size‐gradient CdSe/ZnS nanocrystal quantum dot (NQD) layers into an underlying Si substrate. NQD monolayers are chemically grafted on hydrogen‐terminated Si surfaces via a self‐assembled monolayer of amine modifie...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2014-08, Vol.24 (31), p.5002-5010 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5010 |
---|---|
container_issue | 31 |
container_start_page | 5002 |
container_title | Advanced functional materials |
container_volume | 24 |
creator | De Benedetti, William J. I. Nimmo, Michael T. Rupich, Sara M. Caillard, Louis M. Gartstein, Yuri N. Chabal, Yves J. Malko, Anton V. |
description | Spectroscopic evidence of directed excitonic energy transfer (ET) is presented through size‐gradient CdSe/ZnS nanocrystal quantum dot (NQD) layers into an underlying Si substrate. NQD monolayers are chemically grafted on hydrogen‐terminated Si surfaces via a self‐assembled monolayer of amine modified carboxy‐alkyl chains. Subsequent NQD monolayers are linked with short alkyldiamines. The linking approach enables accurate positioning and enhanced passivation of the layers. Two different sizes of NQDs (energy donors emitting at 545 nm, and energy acceptors emitting at 585 nm) are used in comparing different monolayer and bilayer samples grafted on SiO2 and oxide‐free Si surfaces via time‐resolved photoluminescence measurements. The overall efficiency of ET from the top‐layer donor NQDs into Si is estimated to approach ≈90% through a combination of different energy relaxation pathways. These include sequential ET through the intermediate acceptor layer realized mainly via the non‐radiative mechanism and direct ET into the Si substrate realized by means of the radiative coupling. The experimental observations are quantitatively rationalized by the theoretical modeling without introducing any extraneous energy scavenging processes. This indicates that the linker‐assisted fabrication enables the construction of defect‐free, bandgap‐gradient multilayer NQD/Si hybrid structures suitable for thin‐film photovoltaic applications.
Size‐gradient CdSe/ZnS nanocrystal bilayer structures are fabricated on Si substrates in a layer‐by‐layer architecture with assistance of chemical linkers. Efficient energy transfer is demonstrated from photoexcited nanocrystals into the substrate as achieved via cascaded non‐radiative and direct radiative couplings. This supports the concept of excitonic sensitization of ultrathin Si layers from the adjacent nanocrystal assemblies for photovoltaic applications. |
doi_str_mv | 10.1002/adfm.201400667 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1567120521</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1567120521</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3607-6c69005da680e7c0e3c38fe4638ccfaef9b0a8572cf329c58215cb65d0f24e1c3</originalsourceid><addsrcrecordid>eNqFkD1PwzAQQCMEEp8rc0aWlLOd2MmIoC1IpQx8bpZ7OYMhTcB2BeHXUyiq2JjupHvvhpckhwwGDIAfm9rOBxxYDiCl2kh2mGQyE8DLzfXOHraT3RCeAZhSIt9JcGitQ0dtTM-cJ4xUp8OW_GOf3njTBks-jU--Wzw-pdfuk7KxN_UPPjVth74P0TTpxPTkQ-ra2C2pxmHXpteLWYjeRAr7yZY1TaCD37mX3I6GN6fn2eRqfHF6MslQSFCZRFkBFLWRJZBCIIGitJRLUSJaQ7aagSkLxdEKXmFRclbgTBY1WJ4TQ7GXHK3-vvrubUEh6rkLSE1jWuoWQbNCKsah4GyJDlYo-i4ET1a_ejc3vtcM9HdN_V1Tr2suhWolvLuG-n9ofXI2uvzrZivXhUgfa9f4F728qkLfT8c6V3ej-7vxVFfiC47Micc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1567120521</pqid></control><display><type>article</type><title>Efficient Directed Energy Transfer through Size-Gradient Nanocrystal Layers into Silicon Substrates</title><source>Wiley Journals</source><creator>De Benedetti, William J. I. ; Nimmo, Michael T. ; Rupich, Sara M. ; Caillard, Louis M. ; Gartstein, Yuri N. ; Chabal, Yves J. ; Malko, Anton V.</creator><creatorcontrib>De Benedetti, William J. I. ; Nimmo, Michael T. ; Rupich, Sara M. ; Caillard, Louis M. ; Gartstein, Yuri N. ; Chabal, Yves J. ; Malko, Anton V.</creatorcontrib><description>Spectroscopic evidence of directed excitonic energy transfer (ET) is presented through size‐gradient CdSe/ZnS nanocrystal quantum dot (NQD) layers into an underlying Si substrate. NQD monolayers are chemically grafted on hydrogen‐terminated Si surfaces via a self‐assembled monolayer of amine modified carboxy‐alkyl chains. Subsequent NQD monolayers are linked with short alkyldiamines. The linking approach enables accurate positioning and enhanced passivation of the layers. Two different sizes of NQDs (energy donors emitting at 545 nm, and energy acceptors emitting at 585 nm) are used in comparing different monolayer and bilayer samples grafted on SiO2 and oxide‐free Si surfaces via time‐resolved photoluminescence measurements. The overall efficiency of ET from the top‐layer donor NQDs into Si is estimated to approach ≈90% through a combination of different energy relaxation pathways. These include sequential ET through the intermediate acceptor layer realized mainly via the non‐radiative mechanism and direct ET into the Si substrate realized by means of the radiative coupling. The experimental observations are quantitatively rationalized by the theoretical modeling without introducing any extraneous energy scavenging processes. This indicates that the linker‐assisted fabrication enables the construction of defect‐free, bandgap‐gradient multilayer NQD/Si hybrid structures suitable for thin‐film photovoltaic applications.
Size‐gradient CdSe/ZnS nanocrystal bilayer structures are fabricated on Si substrates in a layer‐by‐layer architecture with assistance of chemical linkers. Efficient energy transfer is demonstrated from photoexcited nanocrystals into the substrate as achieved via cascaded non‐radiative and direct radiative couplings. This supports the concept of excitonic sensitization of ultrathin Si layers from the adjacent nanocrystal assemblies for photovoltaic applications.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201400667</identifier><language>eng</language><publisher>Blackwell Publishing Ltd</publisher><subject>Cadmium selenides ; Energy transfer ; hybrid nanostructures ; Intermetallics ; Monolayers ; Nanocrystals ; semiconductor nanocrystals ; Silicon ; Silicon substrates ; Solar cells</subject><ispartof>Advanced functional materials, 2014-08, Vol.24 (31), p.5002-5010</ispartof><rights>2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3607-6c69005da680e7c0e3c38fe4638ccfaef9b0a8572cf329c58215cb65d0f24e1c3</citedby><cites>FETCH-LOGICAL-c3607-6c69005da680e7c0e3c38fe4638ccfaef9b0a8572cf329c58215cb65d0f24e1c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.201400667$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.201400667$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>De Benedetti, William J. I.</creatorcontrib><creatorcontrib>Nimmo, Michael T.</creatorcontrib><creatorcontrib>Rupich, Sara M.</creatorcontrib><creatorcontrib>Caillard, Louis M.</creatorcontrib><creatorcontrib>Gartstein, Yuri N.</creatorcontrib><creatorcontrib>Chabal, Yves J.</creatorcontrib><creatorcontrib>Malko, Anton V.</creatorcontrib><title>Efficient Directed Energy Transfer through Size-Gradient Nanocrystal Layers into Silicon Substrates</title><title>Advanced functional materials</title><addtitle>Adv. Funct. Mater</addtitle><description>Spectroscopic evidence of directed excitonic energy transfer (ET) is presented through size‐gradient CdSe/ZnS nanocrystal quantum dot (NQD) layers into an underlying Si substrate. NQD monolayers are chemically grafted on hydrogen‐terminated Si surfaces via a self‐assembled monolayer of amine modified carboxy‐alkyl chains. Subsequent NQD monolayers are linked with short alkyldiamines. The linking approach enables accurate positioning and enhanced passivation of the layers. Two different sizes of NQDs (energy donors emitting at 545 nm, and energy acceptors emitting at 585 nm) are used in comparing different monolayer and bilayer samples grafted on SiO2 and oxide‐free Si surfaces via time‐resolved photoluminescence measurements. The overall efficiency of ET from the top‐layer donor NQDs into Si is estimated to approach ≈90% through a combination of different energy relaxation pathways. These include sequential ET through the intermediate acceptor layer realized mainly via the non‐radiative mechanism and direct ET into the Si substrate realized by means of the radiative coupling. The experimental observations are quantitatively rationalized by the theoretical modeling without introducing any extraneous energy scavenging processes. This indicates that the linker‐assisted fabrication enables the construction of defect‐free, bandgap‐gradient multilayer NQD/Si hybrid structures suitable for thin‐film photovoltaic applications.
Size‐gradient CdSe/ZnS nanocrystal bilayer structures are fabricated on Si substrates in a layer‐by‐layer architecture with assistance of chemical linkers. Efficient energy transfer is demonstrated from photoexcited nanocrystals into the substrate as achieved via cascaded non‐radiative and direct radiative couplings. This supports the concept of excitonic sensitization of ultrathin Si layers from the adjacent nanocrystal assemblies for photovoltaic applications.</description><subject>Cadmium selenides</subject><subject>Energy transfer</subject><subject>hybrid nanostructures</subject><subject>Intermetallics</subject><subject>Monolayers</subject><subject>Nanocrystals</subject><subject>semiconductor nanocrystals</subject><subject>Silicon</subject><subject>Silicon substrates</subject><subject>Solar cells</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAQQCMEEp8rc0aWlLOd2MmIoC1IpQx8bpZ7OYMhTcB2BeHXUyiq2JjupHvvhpckhwwGDIAfm9rOBxxYDiCl2kh2mGQyE8DLzfXOHraT3RCeAZhSIt9JcGitQ0dtTM-cJ4xUp8OW_GOf3njTBks-jU--Wzw-pdfuk7KxN_UPPjVth74P0TTpxPTkQ-ra2C2pxmHXpteLWYjeRAr7yZY1TaCD37mX3I6GN6fn2eRqfHF6MslQSFCZRFkBFLWRJZBCIIGitJRLUSJaQ7aagSkLxdEKXmFRclbgTBY1WJ4TQ7GXHK3-vvrubUEh6rkLSE1jWuoWQbNCKsah4GyJDlYo-i4ET1a_ejc3vtcM9HdN_V1Tr2suhWolvLuG-n9ofXI2uvzrZivXhUgfa9f4F728qkLfT8c6V3ej-7vxVFfiC47Micc</recordid><startdate>20140820</startdate><enddate>20140820</enddate><creator>De Benedetti, William J. I.</creator><creator>Nimmo, Michael T.</creator><creator>Rupich, Sara M.</creator><creator>Caillard, Louis M.</creator><creator>Gartstein, Yuri N.</creator><creator>Chabal, Yves J.</creator><creator>Malko, Anton V.</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20140820</creationdate><title>Efficient Directed Energy Transfer through Size-Gradient Nanocrystal Layers into Silicon Substrates</title><author>De Benedetti, William J. I. ; Nimmo, Michael T. ; Rupich, Sara M. ; Caillard, Louis M. ; Gartstein, Yuri N. ; Chabal, Yves J. ; Malko, Anton V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3607-6c69005da680e7c0e3c38fe4638ccfaef9b0a8572cf329c58215cb65d0f24e1c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Cadmium selenides</topic><topic>Energy transfer</topic><topic>hybrid nanostructures</topic><topic>Intermetallics</topic><topic>Monolayers</topic><topic>Nanocrystals</topic><topic>semiconductor nanocrystals</topic><topic>Silicon</topic><topic>Silicon substrates</topic><topic>Solar cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De Benedetti, William J. I.</creatorcontrib><creatorcontrib>Nimmo, Michael T.</creatorcontrib><creatorcontrib>Rupich, Sara M.</creatorcontrib><creatorcontrib>Caillard, Louis M.</creatorcontrib><creatorcontrib>Gartstein, Yuri N.</creatorcontrib><creatorcontrib>Chabal, Yves J.</creatorcontrib><creatorcontrib>Malko, Anton V.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>De Benedetti, William J. I.</au><au>Nimmo, Michael T.</au><au>Rupich, Sara M.</au><au>Caillard, Louis M.</au><au>Gartstein, Yuri N.</au><au>Chabal, Yves J.</au><au>Malko, Anton V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient Directed Energy Transfer through Size-Gradient Nanocrystal Layers into Silicon Substrates</atitle><jtitle>Advanced functional materials</jtitle><addtitle>Adv. Funct. Mater</addtitle><date>2014-08-20</date><risdate>2014</risdate><volume>24</volume><issue>31</issue><spage>5002</spage><epage>5010</epage><pages>5002-5010</pages><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Spectroscopic evidence of directed excitonic energy transfer (ET) is presented through size‐gradient CdSe/ZnS nanocrystal quantum dot (NQD) layers into an underlying Si substrate. NQD monolayers are chemically grafted on hydrogen‐terminated Si surfaces via a self‐assembled monolayer of amine modified carboxy‐alkyl chains. Subsequent NQD monolayers are linked with short alkyldiamines. The linking approach enables accurate positioning and enhanced passivation of the layers. Two different sizes of NQDs (energy donors emitting at 545 nm, and energy acceptors emitting at 585 nm) are used in comparing different monolayer and bilayer samples grafted on SiO2 and oxide‐free Si surfaces via time‐resolved photoluminescence measurements. The overall efficiency of ET from the top‐layer donor NQDs into Si is estimated to approach ≈90% through a combination of different energy relaxation pathways. These include sequential ET through the intermediate acceptor layer realized mainly via the non‐radiative mechanism and direct ET into the Si substrate realized by means of the radiative coupling. The experimental observations are quantitatively rationalized by the theoretical modeling without introducing any extraneous energy scavenging processes. This indicates that the linker‐assisted fabrication enables the construction of defect‐free, bandgap‐gradient multilayer NQD/Si hybrid structures suitable for thin‐film photovoltaic applications.
Size‐gradient CdSe/ZnS nanocrystal bilayer structures are fabricated on Si substrates in a layer‐by‐layer architecture with assistance of chemical linkers. Efficient energy transfer is demonstrated from photoexcited nanocrystals into the substrate as achieved via cascaded non‐radiative and direct radiative couplings. This supports the concept of excitonic sensitization of ultrathin Si layers from the adjacent nanocrystal assemblies for photovoltaic applications.</abstract><pub>Blackwell Publishing Ltd</pub><doi>10.1002/adfm.201400667</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2014-08, Vol.24 (31), p.5002-5010 |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_miscellaneous_1567120521 |
source | Wiley Journals |
subjects | Cadmium selenides Energy transfer hybrid nanostructures Intermetallics Monolayers Nanocrystals semiconductor nanocrystals Silicon Silicon substrates Solar cells |
title | Efficient Directed Energy Transfer through Size-Gradient Nanocrystal Layers into Silicon Substrates |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T12%3A39%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20Directed%20Energy%20Transfer%20through%20Size-Gradient%20Nanocrystal%20Layers%20into%20Silicon%20Substrates&rft.jtitle=Advanced%20functional%20materials&rft.au=De%20Benedetti,%20William%20J.%20I.&rft.date=2014-08-20&rft.volume=24&rft.issue=31&rft.spage=5002&rft.epage=5010&rft.pages=5002-5010&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201400667&rft_dat=%3Cproquest_cross%3E1567120521%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1567120521&rft_id=info:pmid/&rfr_iscdi=true |