Enhanced interfacial rigidity of 1D thermoset nanostructures by interface-induced liquid crystallinity
Polycyanurate networks (PCNs), which form random networks in the bulk, are representative of an important class of thermosetting materials. We show that free surfaces of PCNs exhibit rigidity enhanced by one order of magnitude (quantified by Young's modulus) if they are initially synthesized in...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. C, Materials for optical and electronic devices Materials for optical and electronic devices, 2013-01, Vol.1 (46), p.7758-7765 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7765 |
---|---|
container_issue | 46 |
container_start_page | 7758 |
container_title | Journal of materials chemistry. C, Materials for optical and electronic devices |
container_volume | 1 |
creator | Duran, Hatice Yameen, Basit Geuss, Markus Kappl, Micheal Steinhart, Martin Knoll, Wolfgang |
description | Polycyanurate networks (PCNs), which form random networks in the bulk, are representative of an important class of thermosetting materials. We show that free surfaces of PCNs exhibit rigidity enhanced by one order of magnitude (quantified by Young's modulus) if they are initially synthesized in the presence of hard confining interfaces, such as the pore walls of nanoporous anodic aluminum oxide (AAO). Using self-ordered AAO, which contains arrays of aligned cylindrical nanopores uniform in length and diameter as an inorganic model matrix, we could evidence interface-induced liquid-crystalline ordering of the liquid cyanate ester monomers (CEMs) at the pore walls. The interfacial ordering of the CEMs, which is conserved upon curing, is most likely the origin of enhanced rigidity of the free PCN surfaces after release of the one-dimensional PCN nanostructures from AAO. The results presented here should be of considerable relevance for the processing of industrially relevant thermosets, for the understanding of polymer/solid interfaces, for the design of advanced nanocomposites for applications in aviation and high-speed electronics, and for the design of mechanical hybrid nanostructures for advanced biomimetic adhesive systems. |
doi_str_mv | 10.1039/c3tc31055h |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1567112412</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1567112412</sourcerecordid><originalsourceid>FETCH-LOGICAL-c300t-f084583cad7991c176a1e041f5031f9cb7f3a790ed47f2c9eb8730728caa02a63</originalsourceid><addsrcrecordid>eNpFkD1PwzAYhC0EElXpwi_wiJAC7xvHcTyiUj6kSiwwR45jUyPXaW1nyL-nVVG55W64e4Yj5BbhAYHJR82yZgicby7IrAQOheCsujznsr4mi5R-4KAG66aWM2JXYaOCNj11IZtolXbK0-i-Xe_yRAdL8ZnmjYnbIZlMgwpDynHUeYwm0W46z0zhQj8eQd7tR9dTHaeUlfcuHEA35Moqn8ziz-fk62X1uXwr1h-v78undaEZQC4sNBVvmFa9kBI1ilqhgQotB4ZW6k5YpoQE01fCllqarhEMRNlopaBUNZuTuxN3F4f9aFJuty5p470KZhhTi7wWiGWF5aF6f6rqOKQUjW130W1VnFqE9vhn-_8n-wUmpmoq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1567112412</pqid></control><display><type>article</type><title>Enhanced interfacial rigidity of 1D thermoset nanostructures by interface-induced liquid crystallinity</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Duran, Hatice ; Yameen, Basit ; Geuss, Markus ; Kappl, Micheal ; Steinhart, Martin ; Knoll, Wolfgang</creator><creatorcontrib>Duran, Hatice ; Yameen, Basit ; Geuss, Markus ; Kappl, Micheal ; Steinhart, Martin ; Knoll, Wolfgang</creatorcontrib><description>Polycyanurate networks (PCNs), which form random networks in the bulk, are representative of an important class of thermosetting materials. We show that free surfaces of PCNs exhibit rigidity enhanced by one order of magnitude (quantified by Young's modulus) if they are initially synthesized in the presence of hard confining interfaces, such as the pore walls of nanoporous anodic aluminum oxide (AAO). Using self-ordered AAO, which contains arrays of aligned cylindrical nanopores uniform in length and diameter as an inorganic model matrix, we could evidence interface-induced liquid-crystalline ordering of the liquid cyanate ester monomers (CEMs) at the pore walls. The interfacial ordering of the CEMs, which is conserved upon curing, is most likely the origin of enhanced rigidity of the free PCN surfaces after release of the one-dimensional PCN nanostructures from AAO. The results presented here should be of considerable relevance for the processing of industrially relevant thermosets, for the understanding of polymer/solid interfaces, for the design of advanced nanocomposites for applications in aviation and high-speed electronics, and for the design of mechanical hybrid nanostructures for advanced biomimetic adhesive systems.</description><identifier>ISSN: 2050-7526</identifier><identifier>EISSN: 2050-7534</identifier><identifier>DOI: 10.1039/c3tc31055h</identifier><language>eng</language><subject>Aluminum oxide ; Nanostructure ; Networks ; Order disorder ; PCN ; Porosity ; Rigidity ; Walls</subject><ispartof>Journal of materials chemistry. C, Materials for optical and electronic devices, 2013-01, Vol.1 (46), p.7758-7765</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c300t-f084583cad7991c176a1e041f5031f9cb7f3a790ed47f2c9eb8730728caa02a63</citedby><cites>FETCH-LOGICAL-c300t-f084583cad7991c176a1e041f5031f9cb7f3a790ed47f2c9eb8730728caa02a63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Duran, Hatice</creatorcontrib><creatorcontrib>Yameen, Basit</creatorcontrib><creatorcontrib>Geuss, Markus</creatorcontrib><creatorcontrib>Kappl, Micheal</creatorcontrib><creatorcontrib>Steinhart, Martin</creatorcontrib><creatorcontrib>Knoll, Wolfgang</creatorcontrib><title>Enhanced interfacial rigidity of 1D thermoset nanostructures by interface-induced liquid crystallinity</title><title>Journal of materials chemistry. C, Materials for optical and electronic devices</title><description>Polycyanurate networks (PCNs), which form random networks in the bulk, are representative of an important class of thermosetting materials. We show that free surfaces of PCNs exhibit rigidity enhanced by one order of magnitude (quantified by Young's modulus) if they are initially synthesized in the presence of hard confining interfaces, such as the pore walls of nanoporous anodic aluminum oxide (AAO). Using self-ordered AAO, which contains arrays of aligned cylindrical nanopores uniform in length and diameter as an inorganic model matrix, we could evidence interface-induced liquid-crystalline ordering of the liquid cyanate ester monomers (CEMs) at the pore walls. The interfacial ordering of the CEMs, which is conserved upon curing, is most likely the origin of enhanced rigidity of the free PCN surfaces after release of the one-dimensional PCN nanostructures from AAO. The results presented here should be of considerable relevance for the processing of industrially relevant thermosets, for the understanding of polymer/solid interfaces, for the design of advanced nanocomposites for applications in aviation and high-speed electronics, and for the design of mechanical hybrid nanostructures for advanced biomimetic adhesive systems.</description><subject>Aluminum oxide</subject><subject>Nanostructure</subject><subject>Networks</subject><subject>Order disorder</subject><subject>PCN</subject><subject>Porosity</subject><subject>Rigidity</subject><subject>Walls</subject><issn>2050-7526</issn><issn>2050-7534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpFkD1PwzAYhC0EElXpwi_wiJAC7xvHcTyiUj6kSiwwR45jUyPXaW1nyL-nVVG55W64e4Yj5BbhAYHJR82yZgicby7IrAQOheCsujznsr4mi5R-4KAG66aWM2JXYaOCNj11IZtolXbK0-i-Xe_yRAdL8ZnmjYnbIZlMgwpDynHUeYwm0W46z0zhQj8eQd7tR9dTHaeUlfcuHEA35Moqn8ziz-fk62X1uXwr1h-v78undaEZQC4sNBVvmFa9kBI1ilqhgQotB4ZW6k5YpoQE01fCllqarhEMRNlopaBUNZuTuxN3F4f9aFJuty5p470KZhhTi7wWiGWF5aF6f6rqOKQUjW130W1VnFqE9vhn-_8n-wUmpmoq</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Duran, Hatice</creator><creator>Yameen, Basit</creator><creator>Geuss, Markus</creator><creator>Kappl, Micheal</creator><creator>Steinhart, Martin</creator><creator>Knoll, Wolfgang</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20130101</creationdate><title>Enhanced interfacial rigidity of 1D thermoset nanostructures by interface-induced liquid crystallinity</title><author>Duran, Hatice ; Yameen, Basit ; Geuss, Markus ; Kappl, Micheal ; Steinhart, Martin ; Knoll, Wolfgang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c300t-f084583cad7991c176a1e041f5031f9cb7f3a790ed47f2c9eb8730728caa02a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Aluminum oxide</topic><topic>Nanostructure</topic><topic>Networks</topic><topic>Order disorder</topic><topic>PCN</topic><topic>Porosity</topic><topic>Rigidity</topic><topic>Walls</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duran, Hatice</creatorcontrib><creatorcontrib>Yameen, Basit</creatorcontrib><creatorcontrib>Geuss, Markus</creatorcontrib><creatorcontrib>Kappl, Micheal</creatorcontrib><creatorcontrib>Steinhart, Martin</creatorcontrib><creatorcontrib>Knoll, Wolfgang</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of materials chemistry. C, Materials for optical and electronic devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duran, Hatice</au><au>Yameen, Basit</au><au>Geuss, Markus</au><au>Kappl, Micheal</au><au>Steinhart, Martin</au><au>Knoll, Wolfgang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced interfacial rigidity of 1D thermoset nanostructures by interface-induced liquid crystallinity</atitle><jtitle>Journal of materials chemistry. C, Materials for optical and electronic devices</jtitle><date>2013-01-01</date><risdate>2013</risdate><volume>1</volume><issue>46</issue><spage>7758</spage><epage>7765</epage><pages>7758-7765</pages><issn>2050-7526</issn><eissn>2050-7534</eissn><abstract>Polycyanurate networks (PCNs), which form random networks in the bulk, are representative of an important class of thermosetting materials. We show that free surfaces of PCNs exhibit rigidity enhanced by one order of magnitude (quantified by Young's modulus) if they are initially synthesized in the presence of hard confining interfaces, such as the pore walls of nanoporous anodic aluminum oxide (AAO). Using self-ordered AAO, which contains arrays of aligned cylindrical nanopores uniform in length and diameter as an inorganic model matrix, we could evidence interface-induced liquid-crystalline ordering of the liquid cyanate ester monomers (CEMs) at the pore walls. The interfacial ordering of the CEMs, which is conserved upon curing, is most likely the origin of enhanced rigidity of the free PCN surfaces after release of the one-dimensional PCN nanostructures from AAO. The results presented here should be of considerable relevance for the processing of industrially relevant thermosets, for the understanding of polymer/solid interfaces, for the design of advanced nanocomposites for applications in aviation and high-speed electronics, and for the design of mechanical hybrid nanostructures for advanced biomimetic adhesive systems.</abstract><doi>10.1039/c3tc31055h</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7526 |
ispartof | Journal of materials chemistry. C, Materials for optical and electronic devices, 2013-01, Vol.1 (46), p.7758-7765 |
issn | 2050-7526 2050-7534 |
language | eng |
recordid | cdi_proquest_miscellaneous_1567112412 |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Aluminum oxide Nanostructure Networks Order disorder PCN Porosity Rigidity Walls |
title | Enhanced interfacial rigidity of 1D thermoset nanostructures by interface-induced liquid crystallinity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T08%3A58%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20interfacial%20rigidity%20of%201D%20thermoset%20nanostructures%20by%20interface-induced%20liquid%20crystallinity&rft.jtitle=Journal%20of%20materials%20chemistry.%20C,%20Materials%20for%20optical%20and%20electronic%20devices&rft.au=Duran,%20Hatice&rft.date=2013-01-01&rft.volume=1&rft.issue=46&rft.spage=7758&rft.epage=7765&rft.pages=7758-7765&rft.issn=2050-7526&rft.eissn=2050-7534&rft_id=info:doi/10.1039/c3tc31055h&rft_dat=%3Cproquest_cross%3E1567112412%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1567112412&rft_id=info:pmid/&rfr_iscdi=true |