Enhanced interfacial rigidity of 1D thermoset nanostructures by interface-induced liquid crystallinity

Polycyanurate networks (PCNs), which form random networks in the bulk, are representative of an important class of thermosetting materials. We show that free surfaces of PCNs exhibit rigidity enhanced by one order of magnitude (quantified by Young's modulus) if they are initially synthesized in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. C, Materials for optical and electronic devices Materials for optical and electronic devices, 2013-01, Vol.1 (46), p.7758-7765
Hauptverfasser: Duran, Hatice, Yameen, Basit, Geuss, Markus, Kappl, Micheal, Steinhart, Martin, Knoll, Wolfgang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7765
container_issue 46
container_start_page 7758
container_title Journal of materials chemistry. C, Materials for optical and electronic devices
container_volume 1
creator Duran, Hatice
Yameen, Basit
Geuss, Markus
Kappl, Micheal
Steinhart, Martin
Knoll, Wolfgang
description Polycyanurate networks (PCNs), which form random networks in the bulk, are representative of an important class of thermosetting materials. We show that free surfaces of PCNs exhibit rigidity enhanced by one order of magnitude (quantified by Young's modulus) if they are initially synthesized in the presence of hard confining interfaces, such as the pore walls of nanoporous anodic aluminum oxide (AAO). Using self-ordered AAO, which contains arrays of aligned cylindrical nanopores uniform in length and diameter as an inorganic model matrix, we could evidence interface-induced liquid-crystalline ordering of the liquid cyanate ester monomers (CEMs) at the pore walls. The interfacial ordering of the CEMs, which is conserved upon curing, is most likely the origin of enhanced rigidity of the free PCN surfaces after release of the one-dimensional PCN nanostructures from AAO. The results presented here should be of considerable relevance for the processing of industrially relevant thermosets, for the understanding of polymer/solid interfaces, for the design of advanced nanocomposites for applications in aviation and high-speed electronics, and for the design of mechanical hybrid nanostructures for advanced biomimetic adhesive systems.
doi_str_mv 10.1039/c3tc31055h
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1567112412</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1567112412</sourcerecordid><originalsourceid>FETCH-LOGICAL-c300t-f084583cad7991c176a1e041f5031f9cb7f3a790ed47f2c9eb8730728caa02a63</originalsourceid><addsrcrecordid>eNpFkD1PwzAYhC0EElXpwi_wiJAC7xvHcTyiUj6kSiwwR45jUyPXaW1nyL-nVVG55W64e4Yj5BbhAYHJR82yZgicby7IrAQOheCsujznsr4mi5R-4KAG66aWM2JXYaOCNj11IZtolXbK0-i-Xe_yRAdL8ZnmjYnbIZlMgwpDynHUeYwm0W46z0zhQj8eQd7tR9dTHaeUlfcuHEA35Moqn8ziz-fk62X1uXwr1h-v78undaEZQC4sNBVvmFa9kBI1ilqhgQotB4ZW6k5YpoQE01fCllqarhEMRNlopaBUNZuTuxN3F4f9aFJuty5p470KZhhTi7wWiGWF5aF6f6rqOKQUjW130W1VnFqE9vhn-_8n-wUmpmoq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1567112412</pqid></control><display><type>article</type><title>Enhanced interfacial rigidity of 1D thermoset nanostructures by interface-induced liquid crystallinity</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Duran, Hatice ; Yameen, Basit ; Geuss, Markus ; Kappl, Micheal ; Steinhart, Martin ; Knoll, Wolfgang</creator><creatorcontrib>Duran, Hatice ; Yameen, Basit ; Geuss, Markus ; Kappl, Micheal ; Steinhart, Martin ; Knoll, Wolfgang</creatorcontrib><description>Polycyanurate networks (PCNs), which form random networks in the bulk, are representative of an important class of thermosetting materials. We show that free surfaces of PCNs exhibit rigidity enhanced by one order of magnitude (quantified by Young's modulus) if they are initially synthesized in the presence of hard confining interfaces, such as the pore walls of nanoporous anodic aluminum oxide (AAO). Using self-ordered AAO, which contains arrays of aligned cylindrical nanopores uniform in length and diameter as an inorganic model matrix, we could evidence interface-induced liquid-crystalline ordering of the liquid cyanate ester monomers (CEMs) at the pore walls. The interfacial ordering of the CEMs, which is conserved upon curing, is most likely the origin of enhanced rigidity of the free PCN surfaces after release of the one-dimensional PCN nanostructures from AAO. The results presented here should be of considerable relevance for the processing of industrially relevant thermosets, for the understanding of polymer/solid interfaces, for the design of advanced nanocomposites for applications in aviation and high-speed electronics, and for the design of mechanical hybrid nanostructures for advanced biomimetic adhesive systems.</description><identifier>ISSN: 2050-7526</identifier><identifier>EISSN: 2050-7534</identifier><identifier>DOI: 10.1039/c3tc31055h</identifier><language>eng</language><subject>Aluminum oxide ; Nanostructure ; Networks ; Order disorder ; PCN ; Porosity ; Rigidity ; Walls</subject><ispartof>Journal of materials chemistry. C, Materials for optical and electronic devices, 2013-01, Vol.1 (46), p.7758-7765</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c300t-f084583cad7991c176a1e041f5031f9cb7f3a790ed47f2c9eb8730728caa02a63</citedby><cites>FETCH-LOGICAL-c300t-f084583cad7991c176a1e041f5031f9cb7f3a790ed47f2c9eb8730728caa02a63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Duran, Hatice</creatorcontrib><creatorcontrib>Yameen, Basit</creatorcontrib><creatorcontrib>Geuss, Markus</creatorcontrib><creatorcontrib>Kappl, Micheal</creatorcontrib><creatorcontrib>Steinhart, Martin</creatorcontrib><creatorcontrib>Knoll, Wolfgang</creatorcontrib><title>Enhanced interfacial rigidity of 1D thermoset nanostructures by interface-induced liquid crystallinity</title><title>Journal of materials chemistry. C, Materials for optical and electronic devices</title><description>Polycyanurate networks (PCNs), which form random networks in the bulk, are representative of an important class of thermosetting materials. We show that free surfaces of PCNs exhibit rigidity enhanced by one order of magnitude (quantified by Young's modulus) if they are initially synthesized in the presence of hard confining interfaces, such as the pore walls of nanoporous anodic aluminum oxide (AAO). Using self-ordered AAO, which contains arrays of aligned cylindrical nanopores uniform in length and diameter as an inorganic model matrix, we could evidence interface-induced liquid-crystalline ordering of the liquid cyanate ester monomers (CEMs) at the pore walls. The interfacial ordering of the CEMs, which is conserved upon curing, is most likely the origin of enhanced rigidity of the free PCN surfaces after release of the one-dimensional PCN nanostructures from AAO. The results presented here should be of considerable relevance for the processing of industrially relevant thermosets, for the understanding of polymer/solid interfaces, for the design of advanced nanocomposites for applications in aviation and high-speed electronics, and for the design of mechanical hybrid nanostructures for advanced biomimetic adhesive systems.</description><subject>Aluminum oxide</subject><subject>Nanostructure</subject><subject>Networks</subject><subject>Order disorder</subject><subject>PCN</subject><subject>Porosity</subject><subject>Rigidity</subject><subject>Walls</subject><issn>2050-7526</issn><issn>2050-7534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpFkD1PwzAYhC0EElXpwi_wiJAC7xvHcTyiUj6kSiwwR45jUyPXaW1nyL-nVVG55W64e4Yj5BbhAYHJR82yZgicby7IrAQOheCsujznsr4mi5R-4KAG66aWM2JXYaOCNj11IZtolXbK0-i-Xe_yRAdL8ZnmjYnbIZlMgwpDynHUeYwm0W46z0zhQj8eQd7tR9dTHaeUlfcuHEA35Moqn8ziz-fk62X1uXwr1h-v78undaEZQC4sNBVvmFa9kBI1ilqhgQotB4ZW6k5YpoQE01fCllqarhEMRNlopaBUNZuTuxN3F4f9aFJuty5p470KZhhTi7wWiGWF5aF6f6rqOKQUjW130W1VnFqE9vhn-_8n-wUmpmoq</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Duran, Hatice</creator><creator>Yameen, Basit</creator><creator>Geuss, Markus</creator><creator>Kappl, Micheal</creator><creator>Steinhart, Martin</creator><creator>Knoll, Wolfgang</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20130101</creationdate><title>Enhanced interfacial rigidity of 1D thermoset nanostructures by interface-induced liquid crystallinity</title><author>Duran, Hatice ; Yameen, Basit ; Geuss, Markus ; Kappl, Micheal ; Steinhart, Martin ; Knoll, Wolfgang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c300t-f084583cad7991c176a1e041f5031f9cb7f3a790ed47f2c9eb8730728caa02a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Aluminum oxide</topic><topic>Nanostructure</topic><topic>Networks</topic><topic>Order disorder</topic><topic>PCN</topic><topic>Porosity</topic><topic>Rigidity</topic><topic>Walls</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duran, Hatice</creatorcontrib><creatorcontrib>Yameen, Basit</creatorcontrib><creatorcontrib>Geuss, Markus</creatorcontrib><creatorcontrib>Kappl, Micheal</creatorcontrib><creatorcontrib>Steinhart, Martin</creatorcontrib><creatorcontrib>Knoll, Wolfgang</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of materials chemistry. C, Materials for optical and electronic devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duran, Hatice</au><au>Yameen, Basit</au><au>Geuss, Markus</au><au>Kappl, Micheal</au><au>Steinhart, Martin</au><au>Knoll, Wolfgang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced interfacial rigidity of 1D thermoset nanostructures by interface-induced liquid crystallinity</atitle><jtitle>Journal of materials chemistry. C, Materials for optical and electronic devices</jtitle><date>2013-01-01</date><risdate>2013</risdate><volume>1</volume><issue>46</issue><spage>7758</spage><epage>7765</epage><pages>7758-7765</pages><issn>2050-7526</issn><eissn>2050-7534</eissn><abstract>Polycyanurate networks (PCNs), which form random networks in the bulk, are representative of an important class of thermosetting materials. We show that free surfaces of PCNs exhibit rigidity enhanced by one order of magnitude (quantified by Young's modulus) if they are initially synthesized in the presence of hard confining interfaces, such as the pore walls of nanoporous anodic aluminum oxide (AAO). Using self-ordered AAO, which contains arrays of aligned cylindrical nanopores uniform in length and diameter as an inorganic model matrix, we could evidence interface-induced liquid-crystalline ordering of the liquid cyanate ester monomers (CEMs) at the pore walls. The interfacial ordering of the CEMs, which is conserved upon curing, is most likely the origin of enhanced rigidity of the free PCN surfaces after release of the one-dimensional PCN nanostructures from AAO. The results presented here should be of considerable relevance for the processing of industrially relevant thermosets, for the understanding of polymer/solid interfaces, for the design of advanced nanocomposites for applications in aviation and high-speed electronics, and for the design of mechanical hybrid nanostructures for advanced biomimetic adhesive systems.</abstract><doi>10.1039/c3tc31055h</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2050-7526
ispartof Journal of materials chemistry. C, Materials for optical and electronic devices, 2013-01, Vol.1 (46), p.7758-7765
issn 2050-7526
2050-7534
language eng
recordid cdi_proquest_miscellaneous_1567112412
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Aluminum oxide
Nanostructure
Networks
Order disorder
PCN
Porosity
Rigidity
Walls
title Enhanced interfacial rigidity of 1D thermoset nanostructures by interface-induced liquid crystallinity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T08%3A58%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20interfacial%20rigidity%20of%201D%20thermoset%20nanostructures%20by%20interface-induced%20liquid%20crystallinity&rft.jtitle=Journal%20of%20materials%20chemistry.%20C,%20Materials%20for%20optical%20and%20electronic%20devices&rft.au=Duran,%20Hatice&rft.date=2013-01-01&rft.volume=1&rft.issue=46&rft.spage=7758&rft.epage=7765&rft.pages=7758-7765&rft.issn=2050-7526&rft.eissn=2050-7534&rft_id=info:doi/10.1039/c3tc31055h&rft_dat=%3Cproquest_cross%3E1567112412%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1567112412&rft_id=info:pmid/&rfr_iscdi=true