Forcing faces in plane bipartite graphs (II)
The concept of forcing faces of a plane bipartite graph was first introduced in Che and Chen (2008) [3] [Z. Che, Z. Chen, Forcing faces in plane bipartite graphs, Discrete Mathematics 308 (2008) 2427–2439], which is a natural generalization of the concept of forcing hexagons of a hexagonal system in...
Gespeichert in:
Veröffentlicht in: | Discrete Applied Mathematics 2013-01, Vol.161 (1-2), p.71-80 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 80 |
---|---|
container_issue | 1-2 |
container_start_page | 71 |
container_title | Discrete Applied Mathematics |
container_volume | 161 |
creator | Che, Zhongyuan Chen, Zhibo |
description | The concept of forcing faces of a plane bipartite graph was first introduced in Che and Chen (2008) [3] [Z. Che, Z. Chen, Forcing faces in plane bipartite graphs, Discrete Mathematics 308 (2008) 2427–2439], which is a natural generalization of the concept of forcing hexagons of a hexagonal system introduced in Che and Chen (2006) [2] [Z. Che and Z. Chen, Forcing hexagons in hexagonal systems, MATCH Commun. Math. Comput. Chem. 56 (2006) 649–668]. In this paper, we further extend this concept from finite faces to all faces (including the infinite face) as follows: A face s (finite or infinite) of a 2-connected plane bipartite graph G is called a forcing face if the subgraph G−V(s) obtained by removing all vertices of s together with their incident edges has exactly one perfect matching.
For a plane elementary bipartite graph G with more than two vertices, we give three necessary and sufficient conditions for G to have all faces forcing. We also give a new necessary and sufficient condition for a finite face of G to be forcing in terms of bridges in the Z-transformation graph Z(G) of G. Moreover, for the graphs G whose faces are all forcing, we obtain a characterization of forcing edges in G by using the notion of handle, from which a simple counting formula for the number of forcing edges follows. |
doi_str_mv | 10.1016/j.dam.2012.08.016 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1567109276</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0166218X12003162</els_id><sourcerecordid>1567109276</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-3a5306e04414c3096fd7a187cd70528f2029d4f1773012e866f72bc2f1bead003</originalsourceid><addsrcrecordid>eNp9kEFLAzEQhYMoWKs_wNseK7jrTLJNtngSsVooeFHwFtJkUlPa3TXZCv57U-rZ08DjfY83j7FrhAoB5d2mcmZXcUBeQVNl5YSNsFG8lErhKRtlRZYcm49zdpHSBiA7sRmx23kXbWjXhTeWUhHaot-alopV6E0cwkDFOpr-MxWTxeLmkp15s0109XfH7H3-9Pb4Ui5fnxePD8vSCimGUpipAElQ11hbATPpnTK5jHUKprzxHPjM1R6VErkFNVJ6xVeWe1yRcQBizCbH3D52X3tKg96FZGl7aNbtk8apVAgzrmS24tFqY5dSJK_7GHYm_mgEfVhGb3ReRh-W0dDorGTm_shQ_uE7UNTJBmotuRDJDtp14R_6FzkiaIw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1567109276</pqid></control><display><type>article</type><title>Forcing faces in plane bipartite graphs (II)</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Che, Zhongyuan ; Chen, Zhibo</creator><creatorcontrib>Che, Zhongyuan ; Chen, Zhibo</creatorcontrib><description>The concept of forcing faces of a plane bipartite graph was first introduced in Che and Chen (2008) [3] [Z. Che, Z. Chen, Forcing faces in plane bipartite graphs, Discrete Mathematics 308 (2008) 2427–2439], which is a natural generalization of the concept of forcing hexagons of a hexagonal system introduced in Che and Chen (2006) [2] [Z. Che and Z. Chen, Forcing hexagons in hexagonal systems, MATCH Commun. Math. Comput. Chem. 56 (2006) 649–668]. In this paper, we further extend this concept from finite faces to all faces (including the infinite face) as follows: A face s (finite or infinite) of a 2-connected plane bipartite graph G is called a forcing face if the subgraph G−V(s) obtained by removing all vertices of s together with their incident edges has exactly one perfect matching.
For a plane elementary bipartite graph G with more than two vertices, we give three necessary and sufficient conditions for G to have all faces forcing. We also give a new necessary and sufficient condition for a finite face of G to be forcing in terms of bridges in the Z-transformation graph Z(G) of G. Moreover, for the graphs G whose faces are all forcing, we obtain a characterization of forcing edges in G by using the notion of handle, from which a simple counting formula for the number of forcing edges follows.</description><identifier>ISSN: 0166-218X</identifier><identifier>EISSN: 1872-6771</identifier><identifier>DOI: 10.1016/j.dam.2012.08.016</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>[formula omitted]-transformation graph ; Counting ; Forcing edge ; Forcing face ; Graphs ; Handle ; Hexagons ; Matching ; Mathematical analysis ; Mathematical models ; Perfect matching ; Plane elementary bipartite graph ; Planes</subject><ispartof>Discrete Applied Mathematics, 2013-01, Vol.161 (1-2), p.71-80</ispartof><rights>2012 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-3a5306e04414c3096fd7a187cd70528f2029d4f1773012e866f72bc2f1bead003</citedby><cites>FETCH-LOGICAL-c363t-3a5306e04414c3096fd7a187cd70528f2029d4f1773012e866f72bc2f1bead003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.dam.2012.08.016$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids></links><search><creatorcontrib>Che, Zhongyuan</creatorcontrib><creatorcontrib>Chen, Zhibo</creatorcontrib><title>Forcing faces in plane bipartite graphs (II)</title><title>Discrete Applied Mathematics</title><description>The concept of forcing faces of a plane bipartite graph was first introduced in Che and Chen (2008) [3] [Z. Che, Z. Chen, Forcing faces in plane bipartite graphs, Discrete Mathematics 308 (2008) 2427–2439], which is a natural generalization of the concept of forcing hexagons of a hexagonal system introduced in Che and Chen (2006) [2] [Z. Che and Z. Chen, Forcing hexagons in hexagonal systems, MATCH Commun. Math. Comput. Chem. 56 (2006) 649–668]. In this paper, we further extend this concept from finite faces to all faces (including the infinite face) as follows: A face s (finite or infinite) of a 2-connected plane bipartite graph G is called a forcing face if the subgraph G−V(s) obtained by removing all vertices of s together with their incident edges has exactly one perfect matching.
For a plane elementary bipartite graph G with more than two vertices, we give three necessary and sufficient conditions for G to have all faces forcing. We also give a new necessary and sufficient condition for a finite face of G to be forcing in terms of bridges in the Z-transformation graph Z(G) of G. Moreover, for the graphs G whose faces are all forcing, we obtain a characterization of forcing edges in G by using the notion of handle, from which a simple counting formula for the number of forcing edges follows.</description><subject>[formula omitted]-transformation graph</subject><subject>Counting</subject><subject>Forcing edge</subject><subject>Forcing face</subject><subject>Graphs</subject><subject>Handle</subject><subject>Hexagons</subject><subject>Matching</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Perfect matching</subject><subject>Plane elementary bipartite graph</subject><subject>Planes</subject><issn>0166-218X</issn><issn>1872-6771</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLAzEQhYMoWKs_wNseK7jrTLJNtngSsVooeFHwFtJkUlPa3TXZCv57U-rZ08DjfY83j7FrhAoB5d2mcmZXcUBeQVNl5YSNsFG8lErhKRtlRZYcm49zdpHSBiA7sRmx23kXbWjXhTeWUhHaot-alopV6E0cwkDFOpr-MxWTxeLmkp15s0109XfH7H3-9Pb4Ui5fnxePD8vSCimGUpipAElQ11hbATPpnTK5jHUKprzxHPjM1R6VErkFNVJ6xVeWe1yRcQBizCbH3D52X3tKg96FZGl7aNbtk8apVAgzrmS24tFqY5dSJK_7GHYm_mgEfVhGb3ReRh-W0dDorGTm_shQ_uE7UNTJBmotuRDJDtp14R_6FzkiaIw</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Che, Zhongyuan</creator><creator>Chen, Zhibo</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20130101</creationdate><title>Forcing faces in plane bipartite graphs (II)</title><author>Che, Zhongyuan ; Chen, Zhibo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-3a5306e04414c3096fd7a187cd70528f2029d4f1773012e866f72bc2f1bead003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>[formula omitted]-transformation graph</topic><topic>Counting</topic><topic>Forcing edge</topic><topic>Forcing face</topic><topic>Graphs</topic><topic>Handle</topic><topic>Hexagons</topic><topic>Matching</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Perfect matching</topic><topic>Plane elementary bipartite graph</topic><topic>Planes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Che, Zhongyuan</creatorcontrib><creatorcontrib>Chen, Zhibo</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Discrete Applied Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Che, Zhongyuan</au><au>Chen, Zhibo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Forcing faces in plane bipartite graphs (II)</atitle><jtitle>Discrete Applied Mathematics</jtitle><date>2013-01-01</date><risdate>2013</risdate><volume>161</volume><issue>1-2</issue><spage>71</spage><epage>80</epage><pages>71-80</pages><issn>0166-218X</issn><eissn>1872-6771</eissn><abstract>The concept of forcing faces of a plane bipartite graph was first introduced in Che and Chen (2008) [3] [Z. Che, Z. Chen, Forcing faces in plane bipartite graphs, Discrete Mathematics 308 (2008) 2427–2439], which is a natural generalization of the concept of forcing hexagons of a hexagonal system introduced in Che and Chen (2006) [2] [Z. Che and Z. Chen, Forcing hexagons in hexagonal systems, MATCH Commun. Math. Comput. Chem. 56 (2006) 649–668]. In this paper, we further extend this concept from finite faces to all faces (including the infinite face) as follows: A face s (finite or infinite) of a 2-connected plane bipartite graph G is called a forcing face if the subgraph G−V(s) obtained by removing all vertices of s together with their incident edges has exactly one perfect matching.
For a plane elementary bipartite graph G with more than two vertices, we give three necessary and sufficient conditions for G to have all faces forcing. We also give a new necessary and sufficient condition for a finite face of G to be forcing in terms of bridges in the Z-transformation graph Z(G) of G. Moreover, for the graphs G whose faces are all forcing, we obtain a characterization of forcing edges in G by using the notion of handle, from which a simple counting formula for the number of forcing edges follows.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.dam.2012.08.016</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0166-218X |
ispartof | Discrete Applied Mathematics, 2013-01, Vol.161 (1-2), p.71-80 |
issn | 0166-218X 1872-6771 |
language | eng |
recordid | cdi_proquest_miscellaneous_1567109276 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; ScienceDirect Journals (5 years ago - present) |
subjects | [formula omitted]-transformation graph Counting Forcing edge Forcing face Graphs Handle Hexagons Matching Mathematical analysis Mathematical models Perfect matching Plane elementary bipartite graph Planes |
title | Forcing faces in plane bipartite graphs (II) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T19%3A24%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Forcing%20faces%20in%20plane%20bipartite%20graphs%20(II)&rft.jtitle=Discrete%20Applied%20Mathematics&rft.au=Che,%20Zhongyuan&rft.date=2013-01-01&rft.volume=161&rft.issue=1-2&rft.spage=71&rft.epage=80&rft.pages=71-80&rft.issn=0166-218X&rft.eissn=1872-6771&rft_id=info:doi/10.1016/j.dam.2012.08.016&rft_dat=%3Cproquest_cross%3E1567109276%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1567109276&rft_id=info:pmid/&rft_els_id=S0166218X12003162&rfr_iscdi=true |