Forcing faces in plane bipartite graphs (II)

The concept of forcing faces of a plane bipartite graph was first introduced in Che and Chen (2008) [3] [Z. Che, Z. Chen, Forcing faces in plane bipartite graphs, Discrete Mathematics 308 (2008) 2427–2439], which is a natural generalization of the concept of forcing hexagons of a hexagonal system in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete Applied Mathematics 2013-01, Vol.161 (1-2), p.71-80
Hauptverfasser: Che, Zhongyuan, Chen, Zhibo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 80
container_issue 1-2
container_start_page 71
container_title Discrete Applied Mathematics
container_volume 161
creator Che, Zhongyuan
Chen, Zhibo
description The concept of forcing faces of a plane bipartite graph was first introduced in Che and Chen (2008) [3] [Z. Che, Z. Chen, Forcing faces in plane bipartite graphs, Discrete Mathematics 308 (2008) 2427–2439], which is a natural generalization of the concept of forcing hexagons of a hexagonal system introduced in Che and Chen (2006) [2] [Z. Che and Z. Chen, Forcing hexagons in hexagonal systems, MATCH Commun. Math. Comput. Chem. 56 (2006) 649–668]. In this paper, we further extend this concept from finite faces to all faces (including the infinite face) as follows: A face s (finite or infinite) of a 2-connected plane bipartite graph G is called a forcing face if the subgraph G−V(s) obtained by removing all vertices of s together with their incident edges has exactly one perfect matching. For a plane elementary bipartite graph G with more than two vertices, we give three necessary and sufficient conditions for G to have all faces forcing. We also give a new necessary and sufficient condition for a finite face of G to be forcing in terms of bridges in the Z-transformation graph Z(G) of G. Moreover, for the graphs G whose faces are all forcing, we obtain a characterization of forcing edges in G by using the notion of handle, from which a simple counting formula for the number of forcing edges follows.
doi_str_mv 10.1016/j.dam.2012.08.016
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1567109276</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0166218X12003162</els_id><sourcerecordid>1567109276</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-3a5306e04414c3096fd7a187cd70528f2029d4f1773012e866f72bc2f1bead003</originalsourceid><addsrcrecordid>eNp9kEFLAzEQhYMoWKs_wNseK7jrTLJNtngSsVooeFHwFtJkUlPa3TXZCv57U-rZ08DjfY83j7FrhAoB5d2mcmZXcUBeQVNl5YSNsFG8lErhKRtlRZYcm49zdpHSBiA7sRmx23kXbWjXhTeWUhHaot-alopV6E0cwkDFOpr-MxWTxeLmkp15s0109XfH7H3-9Pb4Ui5fnxePD8vSCimGUpipAElQ11hbATPpnTK5jHUKprzxHPjM1R6VErkFNVJ6xVeWe1yRcQBizCbH3D52X3tKg96FZGl7aNbtk8apVAgzrmS24tFqY5dSJK_7GHYm_mgEfVhGb3ReRh-W0dDorGTm_shQ_uE7UNTJBmotuRDJDtp14R_6FzkiaIw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1567109276</pqid></control><display><type>article</type><title>Forcing faces in plane bipartite graphs (II)</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Che, Zhongyuan ; Chen, Zhibo</creator><creatorcontrib>Che, Zhongyuan ; Chen, Zhibo</creatorcontrib><description>The concept of forcing faces of a plane bipartite graph was first introduced in Che and Chen (2008) [3] [Z. Che, Z. Chen, Forcing faces in plane bipartite graphs, Discrete Mathematics 308 (2008) 2427–2439], which is a natural generalization of the concept of forcing hexagons of a hexagonal system introduced in Che and Chen (2006) [2] [Z. Che and Z. Chen, Forcing hexagons in hexagonal systems, MATCH Commun. Math. Comput. Chem. 56 (2006) 649–668]. In this paper, we further extend this concept from finite faces to all faces (including the infinite face) as follows: A face s (finite or infinite) of a 2-connected plane bipartite graph G is called a forcing face if the subgraph G−V(s) obtained by removing all vertices of s together with their incident edges has exactly one perfect matching. For a plane elementary bipartite graph G with more than two vertices, we give three necessary and sufficient conditions for G to have all faces forcing. We also give a new necessary and sufficient condition for a finite face of G to be forcing in terms of bridges in the Z-transformation graph Z(G) of G. Moreover, for the graphs G whose faces are all forcing, we obtain a characterization of forcing edges in G by using the notion of handle, from which a simple counting formula for the number of forcing edges follows.</description><identifier>ISSN: 0166-218X</identifier><identifier>EISSN: 1872-6771</identifier><identifier>DOI: 10.1016/j.dam.2012.08.016</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>[formula omitted]-transformation graph ; Counting ; Forcing edge ; Forcing face ; Graphs ; Handle ; Hexagons ; Matching ; Mathematical analysis ; Mathematical models ; Perfect matching ; Plane elementary bipartite graph ; Planes</subject><ispartof>Discrete Applied Mathematics, 2013-01, Vol.161 (1-2), p.71-80</ispartof><rights>2012 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-3a5306e04414c3096fd7a187cd70528f2029d4f1773012e866f72bc2f1bead003</citedby><cites>FETCH-LOGICAL-c363t-3a5306e04414c3096fd7a187cd70528f2029d4f1773012e866f72bc2f1bead003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.dam.2012.08.016$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids></links><search><creatorcontrib>Che, Zhongyuan</creatorcontrib><creatorcontrib>Chen, Zhibo</creatorcontrib><title>Forcing faces in plane bipartite graphs (II)</title><title>Discrete Applied Mathematics</title><description>The concept of forcing faces of a plane bipartite graph was first introduced in Che and Chen (2008) [3] [Z. Che, Z. Chen, Forcing faces in plane bipartite graphs, Discrete Mathematics 308 (2008) 2427–2439], which is a natural generalization of the concept of forcing hexagons of a hexagonal system introduced in Che and Chen (2006) [2] [Z. Che and Z. Chen, Forcing hexagons in hexagonal systems, MATCH Commun. Math. Comput. Chem. 56 (2006) 649–668]. In this paper, we further extend this concept from finite faces to all faces (including the infinite face) as follows: A face s (finite or infinite) of a 2-connected plane bipartite graph G is called a forcing face if the subgraph G−V(s) obtained by removing all vertices of s together with their incident edges has exactly one perfect matching. For a plane elementary bipartite graph G with more than two vertices, we give three necessary and sufficient conditions for G to have all faces forcing. We also give a new necessary and sufficient condition for a finite face of G to be forcing in terms of bridges in the Z-transformation graph Z(G) of G. Moreover, for the graphs G whose faces are all forcing, we obtain a characterization of forcing edges in G by using the notion of handle, from which a simple counting formula for the number of forcing edges follows.</description><subject>[formula omitted]-transformation graph</subject><subject>Counting</subject><subject>Forcing edge</subject><subject>Forcing face</subject><subject>Graphs</subject><subject>Handle</subject><subject>Hexagons</subject><subject>Matching</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Perfect matching</subject><subject>Plane elementary bipartite graph</subject><subject>Planes</subject><issn>0166-218X</issn><issn>1872-6771</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLAzEQhYMoWKs_wNseK7jrTLJNtngSsVooeFHwFtJkUlPa3TXZCv57U-rZ08DjfY83j7FrhAoB5d2mcmZXcUBeQVNl5YSNsFG8lErhKRtlRZYcm49zdpHSBiA7sRmx23kXbWjXhTeWUhHaot-alopV6E0cwkDFOpr-MxWTxeLmkp15s0109XfH7H3-9Pb4Ui5fnxePD8vSCimGUpipAElQ11hbATPpnTK5jHUKprzxHPjM1R6VErkFNVJ6xVeWe1yRcQBizCbH3D52X3tKg96FZGl7aNbtk8apVAgzrmS24tFqY5dSJK_7GHYm_mgEfVhGb3ReRh-W0dDorGTm_shQ_uE7UNTJBmotuRDJDtp14R_6FzkiaIw</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Che, Zhongyuan</creator><creator>Chen, Zhibo</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20130101</creationdate><title>Forcing faces in plane bipartite graphs (II)</title><author>Che, Zhongyuan ; Chen, Zhibo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-3a5306e04414c3096fd7a187cd70528f2029d4f1773012e866f72bc2f1bead003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>[formula omitted]-transformation graph</topic><topic>Counting</topic><topic>Forcing edge</topic><topic>Forcing face</topic><topic>Graphs</topic><topic>Handle</topic><topic>Hexagons</topic><topic>Matching</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Perfect matching</topic><topic>Plane elementary bipartite graph</topic><topic>Planes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Che, Zhongyuan</creatorcontrib><creatorcontrib>Chen, Zhibo</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Discrete Applied Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Che, Zhongyuan</au><au>Chen, Zhibo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Forcing faces in plane bipartite graphs (II)</atitle><jtitle>Discrete Applied Mathematics</jtitle><date>2013-01-01</date><risdate>2013</risdate><volume>161</volume><issue>1-2</issue><spage>71</spage><epage>80</epage><pages>71-80</pages><issn>0166-218X</issn><eissn>1872-6771</eissn><abstract>The concept of forcing faces of a plane bipartite graph was first introduced in Che and Chen (2008) [3] [Z. Che, Z. Chen, Forcing faces in plane bipartite graphs, Discrete Mathematics 308 (2008) 2427–2439], which is a natural generalization of the concept of forcing hexagons of a hexagonal system introduced in Che and Chen (2006) [2] [Z. Che and Z. Chen, Forcing hexagons in hexagonal systems, MATCH Commun. Math. Comput. Chem. 56 (2006) 649–668]. In this paper, we further extend this concept from finite faces to all faces (including the infinite face) as follows: A face s (finite or infinite) of a 2-connected plane bipartite graph G is called a forcing face if the subgraph G−V(s) obtained by removing all vertices of s together with their incident edges has exactly one perfect matching. For a plane elementary bipartite graph G with more than two vertices, we give three necessary and sufficient conditions for G to have all faces forcing. We also give a new necessary and sufficient condition for a finite face of G to be forcing in terms of bridges in the Z-transformation graph Z(G) of G. Moreover, for the graphs G whose faces are all forcing, we obtain a characterization of forcing edges in G by using the notion of handle, from which a simple counting formula for the number of forcing edges follows.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.dam.2012.08.016</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0166-218X
ispartof Discrete Applied Mathematics, 2013-01, Vol.161 (1-2), p.71-80
issn 0166-218X
1872-6771
language eng
recordid cdi_proquest_miscellaneous_1567109276
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; ScienceDirect Journals (5 years ago - present)
subjects [formula omitted]-transformation graph
Counting
Forcing edge
Forcing face
Graphs
Handle
Hexagons
Matching
Mathematical analysis
Mathematical models
Perfect matching
Plane elementary bipartite graph
Planes
title Forcing faces in plane bipartite graphs (II)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T19%3A24%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Forcing%20faces%20in%20plane%20bipartite%20graphs%20(II)&rft.jtitle=Discrete%20Applied%20Mathematics&rft.au=Che,%20Zhongyuan&rft.date=2013-01-01&rft.volume=161&rft.issue=1-2&rft.spage=71&rft.epage=80&rft.pages=71-80&rft.issn=0166-218X&rft.eissn=1872-6771&rft_id=info:doi/10.1016/j.dam.2012.08.016&rft_dat=%3Cproquest_cross%3E1567109276%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1567109276&rft_id=info:pmid/&rft_els_id=S0166218X12003162&rfr_iscdi=true