Optical dispersion and dielectric properties of rubrene organic semiconductor thin film
Rubrene thin film has been fabricated on a glass substrate by spin-coating at 300 K. The optical dispersion and dielectric properties of the film have been determined from the analysis of transmittance and reflectance measurements at normal incident of light between 200 and 700 nm. The optical trans...
Gespeichert in:
Veröffentlicht in: | Journal of materials science. Materials in electronics 2014-08, Vol.25 (8), p.3586-3593 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3593 |
---|---|
container_issue | 8 |
container_start_page | 3586 |
container_title | Journal of materials science. Materials in electronics |
container_volume | 25 |
creator | Barış, Behzad Özdemir, Hatice Gürel Tuğluoğlu, Nihat Karadeniz, Serdar Yüksel, Ömer Faruk Kişnişci, Zeynep |
description | Rubrene thin film has been fabricated on a glass substrate by spin-coating at 300 K. The optical dispersion and dielectric properties of the film have been determined from the analysis of transmittance and reflectance measurements at normal incident of light between 200 and 700 nm. The optical transmittance of the film was estimated as of 80–85 % in the visible range. Optical absorption characteristics show that the absorption mechanism is due to the indirect transition. The transport and onset optical energy gaps were determined as 2.93 and 2.31 eV, respectively. Single term Sellmeier dispersion relation and Wemple–DiDomenico single oscillator model were used to determine the optical dispersion parameters. Several dispersion parameters such as lattice dielectric constant, optical dielectric constant at higher frequency, dispersion energy, oscillator energy, the ratio of carrier concentration to the effective mass, the average oscillator wavelength, and average oscillator strength were determined by analysis of refractive index dispersion. The loss factor, the electric modulus, the optical conductivity, the volume and surface energy loss functions, and the relaxation time were also evaluated from the optical dielectric constants analysis. |
doi_str_mv | 10.1007/s10854-014-2060-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1567102751</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3365326531</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-ef97a4f0efb5cfbd1c8007177656dd9142d7e9588d4ba6f4f3ffa822cacb94983</originalsourceid><addsrcrecordid>eNp1kM1KxDAUhYMoOI4-gLuAGzfRJE2adCmDfzAwG0V3IU2TMUOb1KRd-PZmGBciuLpc7ncO5x4ALgm-IRiL20yw5AxhwhDFNUb1EVgQLirEJH0_BgvccIEYp_QUnOW8wxjXrJIL8LYZJ290DzufR5uyjwHq0JXV9tZMyRs4plguk7cZRgfT3CYbLIxpq0O5Zjt4E0M3mykmOH34AJ3vh3Nw4nSf7cXPXILXh_uX1RNabx6fV3drZCpJJ2RdIzRz2LqWG9d2xMjyDRGi5nXXNYTRTtiGS9mxVteOuco5LSk12rQNa2S1BNcH35Lyc7Z5UoPPxva9DjbOWRFeC4Kp4KSgV3_QXZxTKOkKxSpGZMNxociBMinmnKxTY_KDTl-KYLWvWh2qVqVqta9a1UVDD5pc2LC16Zfzv6JvsfKCcQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1543418950</pqid></control><display><type>article</type><title>Optical dispersion and dielectric properties of rubrene organic semiconductor thin film</title><source>SpringerLink Journals</source><creator>Barış, Behzad ; Özdemir, Hatice Gürel ; Tuğluoğlu, Nihat ; Karadeniz, Serdar ; Yüksel, Ömer Faruk ; Kişnişci, Zeynep</creator><creatorcontrib>Barış, Behzad ; Özdemir, Hatice Gürel ; Tuğluoğlu, Nihat ; Karadeniz, Serdar ; Yüksel, Ömer Faruk ; Kişnişci, Zeynep</creatorcontrib><description>Rubrene thin film has been fabricated on a glass substrate by spin-coating at 300 K. The optical dispersion and dielectric properties of the film have been determined from the analysis of transmittance and reflectance measurements at normal incident of light between 200 and 700 nm. The optical transmittance of the film was estimated as of 80–85 % in the visible range. Optical absorption characteristics show that the absorption mechanism is due to the indirect transition. The transport and onset optical energy gaps were determined as 2.93 and 2.31 eV, respectively. Single term Sellmeier dispersion relation and Wemple–DiDomenico single oscillator model were used to determine the optical dispersion parameters. Several dispersion parameters such as lattice dielectric constant, optical dielectric constant at higher frequency, dispersion energy, oscillator energy, the ratio of carrier concentration to the effective mass, the average oscillator wavelength, and average oscillator strength were determined by analysis of refractive index dispersion. The loss factor, the electric modulus, the optical conductivity, the volume and surface energy loss functions, and the relaxation time were also evaluated from the optical dielectric constants analysis.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-014-2060-6</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Carrier density ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Dielectric constant ; Dielectric properties ; Dispersions ; Materials Science ; Mathematical models ; Optical and Electronic Materials ; Optical properties ; Oscillators ; Thin films</subject><ispartof>Journal of materials science. Materials in electronics, 2014-08, Vol.25 (8), p.3586-3593</ispartof><rights>Springer Science+Business Media New York 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-ef97a4f0efb5cfbd1c8007177656dd9142d7e9588d4ba6f4f3ffa822cacb94983</citedby><cites>FETCH-LOGICAL-c382t-ef97a4f0efb5cfbd1c8007177656dd9142d7e9588d4ba6f4f3ffa822cacb94983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10854-014-2060-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10854-014-2060-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Barış, Behzad</creatorcontrib><creatorcontrib>Özdemir, Hatice Gürel</creatorcontrib><creatorcontrib>Tuğluoğlu, Nihat</creatorcontrib><creatorcontrib>Karadeniz, Serdar</creatorcontrib><creatorcontrib>Yüksel, Ömer Faruk</creatorcontrib><creatorcontrib>Kişnişci, Zeynep</creatorcontrib><title>Optical dispersion and dielectric properties of rubrene organic semiconductor thin film</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>Rubrene thin film has been fabricated on a glass substrate by spin-coating at 300 K. The optical dispersion and dielectric properties of the film have been determined from the analysis of transmittance and reflectance measurements at normal incident of light between 200 and 700 nm. The optical transmittance of the film was estimated as of 80–85 % in the visible range. Optical absorption characteristics show that the absorption mechanism is due to the indirect transition. The transport and onset optical energy gaps were determined as 2.93 and 2.31 eV, respectively. Single term Sellmeier dispersion relation and Wemple–DiDomenico single oscillator model were used to determine the optical dispersion parameters. Several dispersion parameters such as lattice dielectric constant, optical dielectric constant at higher frequency, dispersion energy, oscillator energy, the ratio of carrier concentration to the effective mass, the average oscillator wavelength, and average oscillator strength were determined by analysis of refractive index dispersion. The loss factor, the electric modulus, the optical conductivity, the volume and surface energy loss functions, and the relaxation time were also evaluated from the optical dielectric constants analysis.</description><subject>Carrier density</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Dielectric constant</subject><subject>Dielectric properties</subject><subject>Dispersions</subject><subject>Materials Science</subject><subject>Mathematical models</subject><subject>Optical and Electronic Materials</subject><subject>Optical properties</subject><subject>Oscillators</subject><subject>Thin films</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kM1KxDAUhYMoOI4-gLuAGzfRJE2adCmDfzAwG0V3IU2TMUOb1KRd-PZmGBciuLpc7ncO5x4ALgm-IRiL20yw5AxhwhDFNUb1EVgQLirEJH0_BgvccIEYp_QUnOW8wxjXrJIL8LYZJ290DzufR5uyjwHq0JXV9tZMyRs4plguk7cZRgfT3CYbLIxpq0O5Zjt4E0M3mykmOH34AJ3vh3Nw4nSf7cXPXILXh_uX1RNabx6fV3drZCpJJ2RdIzRz2LqWG9d2xMjyDRGi5nXXNYTRTtiGS9mxVteOuco5LSk12rQNa2S1BNcH35Lyc7Z5UoPPxva9DjbOWRFeC4Kp4KSgV3_QXZxTKOkKxSpGZMNxociBMinmnKxTY_KDTl-KYLWvWh2qVqVqta9a1UVDD5pc2LC16Zfzv6JvsfKCcQ</recordid><startdate>20140801</startdate><enddate>20140801</enddate><creator>Barış, Behzad</creator><creator>Özdemir, Hatice Gürel</creator><creator>Tuğluoğlu, Nihat</creator><creator>Karadeniz, Serdar</creator><creator>Yüksel, Ömer Faruk</creator><creator>Kişnişci, Zeynep</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope><scope>7U5</scope></search><sort><creationdate>20140801</creationdate><title>Optical dispersion and dielectric properties of rubrene organic semiconductor thin film</title><author>Barış, Behzad ; Özdemir, Hatice Gürel ; Tuğluoğlu, Nihat ; Karadeniz, Serdar ; Yüksel, Ömer Faruk ; Kişnişci, Zeynep</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-ef97a4f0efb5cfbd1c8007177656dd9142d7e9588d4ba6f4f3ffa822cacb94983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Carrier density</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Dielectric constant</topic><topic>Dielectric properties</topic><topic>Dispersions</topic><topic>Materials Science</topic><topic>Mathematical models</topic><topic>Optical and Electronic Materials</topic><topic>Optical properties</topic><topic>Oscillators</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barış, Behzad</creatorcontrib><creatorcontrib>Özdemir, Hatice Gürel</creatorcontrib><creatorcontrib>Tuğluoğlu, Nihat</creatorcontrib><creatorcontrib>Karadeniz, Serdar</creatorcontrib><creatorcontrib>Yüksel, Ömer Faruk</creatorcontrib><creatorcontrib>Kişnişci, Zeynep</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering & Technology Collection</collection><collection>Solid State and Superconductivity Abstracts</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barış, Behzad</au><au>Özdemir, Hatice Gürel</au><au>Tuğluoğlu, Nihat</au><au>Karadeniz, Serdar</au><au>Yüksel, Ömer Faruk</au><au>Kişnişci, Zeynep</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optical dispersion and dielectric properties of rubrene organic semiconductor thin film</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2014-08-01</date><risdate>2014</risdate><volume>25</volume><issue>8</issue><spage>3586</spage><epage>3593</epage><pages>3586-3593</pages><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>Rubrene thin film has been fabricated on a glass substrate by spin-coating at 300 K. The optical dispersion and dielectric properties of the film have been determined from the analysis of transmittance and reflectance measurements at normal incident of light between 200 and 700 nm. The optical transmittance of the film was estimated as of 80–85 % in the visible range. Optical absorption characteristics show that the absorption mechanism is due to the indirect transition. The transport and onset optical energy gaps were determined as 2.93 and 2.31 eV, respectively. Single term Sellmeier dispersion relation and Wemple–DiDomenico single oscillator model were used to determine the optical dispersion parameters. Several dispersion parameters such as lattice dielectric constant, optical dielectric constant at higher frequency, dispersion energy, oscillator energy, the ratio of carrier concentration to the effective mass, the average oscillator wavelength, and average oscillator strength were determined by analysis of refractive index dispersion. The loss factor, the electric modulus, the optical conductivity, the volume and surface energy loss functions, and the relaxation time were also evaluated from the optical dielectric constants analysis.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10854-014-2060-6</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4522 |
ispartof | Journal of materials science. Materials in electronics, 2014-08, Vol.25 (8), p.3586-3593 |
issn | 0957-4522 1573-482X |
language | eng |
recordid | cdi_proquest_miscellaneous_1567102751 |
source | SpringerLink Journals |
subjects | Carrier density Characterization and Evaluation of Materials Chemistry and Materials Science Dielectric constant Dielectric properties Dispersions Materials Science Mathematical models Optical and Electronic Materials Optical properties Oscillators Thin films |
title | Optical dispersion and dielectric properties of rubrene organic semiconductor thin film |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T09%3A47%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optical%20dispersion%20and%20dielectric%20properties%20of%20rubrene%20organic%20semiconductor%20thin%20film&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Bar%C4%B1%C5%9F,%20Behzad&rft.date=2014-08-01&rft.volume=25&rft.issue=8&rft.spage=3586&rft.epage=3593&rft.pages=3586-3593&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-014-2060-6&rft_dat=%3Cproquest_cross%3E3365326531%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1543418950&rft_id=info:pmid/&rfr_iscdi=true |