A Simple Proof of the Existence of the Best Estimator in a Quasilinear Regression Model
We provide a theorem on the existence of the best estimator in a quasilinear regression model, from which the existence of the best estimator for the whole class of nonlinear model functions follows immediately. The obtained theorem both extends and generalizes the previously known existence result....
Gespeichert in:
Veröffentlicht in: | Journal of optimization theory and applications 2014-07, Vol.162 (1), p.293-302 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 302 |
---|---|
container_issue | 1 |
container_start_page | 293 |
container_title | Journal of optimization theory and applications |
container_volume | 162 |
creator | Jukic, Dragan |
description | We provide a theorem on the existence of the best estimator in a quasilinear regression model, from which the existence of the best estimator for the whole class of nonlinear model functions follows immediately. The obtained theorem both extends and generalizes the previously known existence result. Our proof is elementary and rests on the basic knowledge of linear algebra and calculus. |
doi_str_mv | 10.1007/s10957-013-0434-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1567102036</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3365312571</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-d4b45d9063867663fdd0a9494eb5dec44aadae2761af4473a6f7c37ce7d9683d3</originalsourceid><addsrcrecordid>eNp1kNtKAzEQhoMoWKsP4F3AG29Wc9pkc1lLPUDFM16GdDNbt2w3NdkFfXtTVkEEYWBg-P5h5kPomJIzSog6j5ToXGWE8owILjK6g0Y0VzxjhSp20YgQxjLOuN5HBzGuCCG6UGKEXif4qV5vGsD3wfsKp-reAM8-6thBW8LP4AJih2exq9e28wHXLbb4obexbuoWbMCPsAwQY-1bfOsdNIdor7JNhKPvPkYvl7Pn6XU2v7u6mU7mWSmo7jInFiJ3mkheSCUlr5wjVgstYJE7KIWw1llgSlJbCaG4lZUquSpBOS0L7vgYnQ57N8G_9-lIs65jCU1jW_B9NDSXihJGuEzoyR905fvQpusSlZxRxVieKDpQZfAxBqjMJqSnw6ehxGxVm0G1SarNVrWhKcOGTExsu4Twa_O_oS88Zn_L</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1543417225</pqid></control><display><type>article</type><title>A Simple Proof of the Existence of the Best Estimator in a Quasilinear Regression Model</title><source>Springer Nature - Complete Springer Journals</source><creator>Jukic, Dragan</creator><creatorcontrib>Jukic, Dragan</creatorcontrib><description>We provide a theorem on the existence of the best estimator in a quasilinear regression model, from which the existence of the best estimator for the whole class of nonlinear model functions follows immediately. The obtained theorem both extends and generalizes the previously known existence result. Our proof is elementary and rests on the basic knowledge of linear algebra and calculus.</description><identifier>ISSN: 0022-3239</identifier><identifier>EISSN: 1573-2878</identifier><identifier>DOI: 10.1007/s10957-013-0434-1</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Analysis ; Applications of Mathematics ; Calculus ; Calculus of Variations and Optimal Control; Optimization ; Engineering ; Estimating techniques ; Estimators ; Existence theorems ; Linear algebra ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Operations Research/Decision Theory ; Optimization ; Proving ; Regression ; Regression analysis ; Studies ; Theorems ; Theory of Computation</subject><ispartof>Journal of optimization theory and applications, 2014-07, Vol.162 (1), p.293-302</ispartof><rights>Springer Science+Business Media New York 2013</rights><rights>Springer Science+Business Media New York 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-d4b45d9063867663fdd0a9494eb5dec44aadae2761af4473a6f7c37ce7d9683d3</citedby><cites>FETCH-LOGICAL-c419t-d4b45d9063867663fdd0a9494eb5dec44aadae2761af4473a6f7c37ce7d9683d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10957-013-0434-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10957-013-0434-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Jukic, Dragan</creatorcontrib><title>A Simple Proof of the Existence of the Best Estimator in a Quasilinear Regression Model</title><title>Journal of optimization theory and applications</title><addtitle>J Optim Theory Appl</addtitle><description>We provide a theorem on the existence of the best estimator in a quasilinear regression model, from which the existence of the best estimator for the whole class of nonlinear model functions follows immediately. The obtained theorem both extends and generalizes the previously known existence result. Our proof is elementary and rests on the basic knowledge of linear algebra and calculus.</description><subject>Analysis</subject><subject>Applications of Mathematics</subject><subject>Calculus</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Engineering</subject><subject>Estimating techniques</subject><subject>Estimators</subject><subject>Existence theorems</subject><subject>Linear algebra</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Proving</subject><subject>Regression</subject><subject>Regression analysis</subject><subject>Studies</subject><subject>Theorems</subject><subject>Theory of Computation</subject><issn>0022-3239</issn><issn>1573-2878</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kNtKAzEQhoMoWKsP4F3AG29Wc9pkc1lLPUDFM16GdDNbt2w3NdkFfXtTVkEEYWBg-P5h5kPomJIzSog6j5ToXGWE8owILjK6g0Y0VzxjhSp20YgQxjLOuN5HBzGuCCG6UGKEXif4qV5vGsD3wfsKp-reAM8-6thBW8LP4AJih2exq9e28wHXLbb4obexbuoWbMCPsAwQY-1bfOsdNIdor7JNhKPvPkYvl7Pn6XU2v7u6mU7mWSmo7jInFiJ3mkheSCUlr5wjVgstYJE7KIWw1llgSlJbCaG4lZUquSpBOS0L7vgYnQ57N8G_9-lIs65jCU1jW_B9NDSXihJGuEzoyR905fvQpusSlZxRxVieKDpQZfAxBqjMJqSnw6ehxGxVm0G1SarNVrWhKcOGTExsu4Twa_O_oS88Zn_L</recordid><startdate>20140701</startdate><enddate>20140701</enddate><creator>Jukic, Dragan</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L.0</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20140701</creationdate><title>A Simple Proof of the Existence of the Best Estimator in a Quasilinear Regression Model</title><author>Jukic, Dragan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-d4b45d9063867663fdd0a9494eb5dec44aadae2761af4473a6f7c37ce7d9683d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Analysis</topic><topic>Applications of Mathematics</topic><topic>Calculus</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Engineering</topic><topic>Estimating techniques</topic><topic>Estimators</topic><topic>Existence theorems</topic><topic>Linear algebra</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Proving</topic><topic>Regression</topic><topic>Regression analysis</topic><topic>Studies</topic><topic>Theorems</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jukic, Dragan</creatorcontrib><collection>CrossRef</collection><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global (ProQuest)</collection><collection>Research Library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of optimization theory and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jukic, Dragan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Simple Proof of the Existence of the Best Estimator in a Quasilinear Regression Model</atitle><jtitle>Journal of optimization theory and applications</jtitle><stitle>J Optim Theory Appl</stitle><date>2014-07-01</date><risdate>2014</risdate><volume>162</volume><issue>1</issue><spage>293</spage><epage>302</epage><pages>293-302</pages><issn>0022-3239</issn><eissn>1573-2878</eissn><abstract>We provide a theorem on the existence of the best estimator in a quasilinear regression model, from which the existence of the best estimator for the whole class of nonlinear model functions follows immediately. The obtained theorem both extends and generalizes the previously known existence result. Our proof is elementary and rests on the basic knowledge of linear algebra and calculus.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10957-013-0434-1</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3239 |
ispartof | Journal of optimization theory and applications, 2014-07, Vol.162 (1), p.293-302 |
issn | 0022-3239 1573-2878 |
language | eng |
recordid | cdi_proquest_miscellaneous_1567102036 |
source | Springer Nature - Complete Springer Journals |
subjects | Analysis Applications of Mathematics Calculus Calculus of Variations and Optimal Control Optimization Engineering Estimating techniques Estimators Existence theorems Linear algebra Mathematical analysis Mathematics Mathematics and Statistics Operations Research/Decision Theory Optimization Proving Regression Regression analysis Studies Theorems Theory of Computation |
title | A Simple Proof of the Existence of the Best Estimator in a Quasilinear Regression Model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A24%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Simple%20Proof%20of%20the%20Existence%20of%20the%20Best%20Estimator%20in%20a%20Quasilinear%20Regression%20Model&rft.jtitle=Journal%20of%20optimization%20theory%20and%20applications&rft.au=Jukic,%20Dragan&rft.date=2014-07-01&rft.volume=162&rft.issue=1&rft.spage=293&rft.epage=302&rft.pages=293-302&rft.issn=0022-3239&rft.eissn=1573-2878&rft_id=info:doi/10.1007/s10957-013-0434-1&rft_dat=%3Cproquest_cross%3E3365312571%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1543417225&rft_id=info:pmid/&rfr_iscdi=true |