Research on Multi-Agent Formation’s Obstacle Avoidance Problem Based on Three-Dimensional Vectorial Artificial Potential Field Method

In order to solve the obstacle avoidance problem when the Multi-Agent formation get through the area full of obstacles, improved the traditional Artificial Potential Field method, add the vectorial information to the agent’s model, presented the Three-Dimensional Vectorial Artificial Potential Field...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Mechanics and Materials 2014-07, Vol.596 (Mechatronics and Industrial Informatics II), p.251-258
Hauptverfasser: Wang, Cun Song, Yang, Bao Jian, Yin, Lin Fei, Peng, Chen, Dai, Ji Yang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 258
container_issue Mechatronics and Industrial Informatics II
container_start_page 251
container_title Applied Mechanics and Materials
container_volume 596
creator Wang, Cun Song
Yang, Bao Jian
Yin, Lin Fei
Peng, Chen
Dai, Ji Yang
description In order to solve the obstacle avoidance problem when the Multi-Agent formation get through the area full of obstacles, improved the traditional Artificial Potential Field method, add the vectorial information to the agent’s model, presented the Three-Dimensional Vectorial Artificial Potential Field method (TDVAPF). Firstly, improved the model of agent, obstacle and target; then, improved the Multi-Agent formation motion model, the Multi-Agent formation’s structure is “pyramid” structure; Finally, improved the agent’s force, add the “rotational force” to the agent’s force, it makes agent avoid the “local trouble”. The numerical simulation verified the correctness and effectiveness of the TDVAPF method in Multi-Agent formation’s obstacle avoidance problem.
doi_str_mv 10.4028/www.scientific.net/AMM.596.251
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1567096789</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3377135741</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3041-a6f7a552facd469dcf5f4e5a3b7c314d98297df2358d2082c36abc6d70cf05e3</originalsourceid><addsrcrecordid>eNqNkc-KFDEQxhv_gOu67xAQxEv35n-nL2K7OirssIsMXkMmqXaydHfWJOPgzZvP4Ov5JKZ3BMWTp_qgvvqqil9VPSO44Ziq88Ph0CTrYc5-8LaZIZ_363UjOtlQQe5VJ0RKWrdc0fvVWdcqhpligrSSP7jr4bpjTD6qHqd0g7HkhKuT6vsHSGCi3aEwo_V-zL7uP5UVaBXiZLIP889vPxK62qZs7Aio_xK8M7MFdB3DdoQJvTIJ3DK92UWA-rWfYE5lzozoI9gcoi-qj3dHL_I65OWFolYeRofWkHfBPakeDmZMcPa7nlab1ZvNxbv68urt-4v-srYMc1IbObRGCDoY67jsnB3EwEEYtm0tI9x1inatGygTylGsqGXSbK10LbYDFsBOq-fH2NsYPu8hZT35ZGEczQxhnzQRssWdbFVXrE__sd6EfSxvLS4uVEcUl8X14uiyMaQUYdC30U8mftUE6wWbLtj0H2y6YNMFmy7YdMFWAl4eA3I0c8pgd3_t-b-IX1ZCqcE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1545891846</pqid></control><display><type>article</type><title>Research on Multi-Agent Formation’s Obstacle Avoidance Problem Based on Three-Dimensional Vectorial Artificial Potential Field Method</title><source>Scientific.net Journals</source><creator>Wang, Cun Song ; Yang, Bao Jian ; Yin, Lin Fei ; Peng, Chen ; Dai, Ji Yang</creator><creatorcontrib>Wang, Cun Song ; Yang, Bao Jian ; Yin, Lin Fei ; Peng, Chen ; Dai, Ji Yang</creatorcontrib><description>In order to solve the obstacle avoidance problem when the Multi-Agent formation get through the area full of obstacles, improved the traditional Artificial Potential Field method, add the vectorial information to the agent’s model, presented the Three-Dimensional Vectorial Artificial Potential Field method (TDVAPF). Firstly, improved the model of agent, obstacle and target; then, improved the Multi-Agent formation motion model, the Multi-Agent formation’s structure is “pyramid” structure; Finally, improved the agent’s force, add the “rotational force” to the agent’s force, it makes agent avoid the “local trouble”. The numerical simulation verified the correctness and effectiveness of the TDVAPF method in Multi-Agent formation’s obstacle avoidance problem.</description><identifier>ISSN: 1660-9336</identifier><identifier>ISSN: 1662-7482</identifier><identifier>ISBN: 9783038351764</identifier><identifier>ISBN: 3038351768</identifier><identifier>EISSN: 1662-7482</identifier><identifier>DOI: 10.4028/www.scientific.net/AMM.596.251</identifier><language>eng</language><publisher>Zurich: Trans Tech Publications Ltd</publisher><subject>Formations ; Mathematical models ; Multiagent systems ; Obstacle avoidance ; Obstacles ; Potential fields ; Three dimensional ; Three dimensional models</subject><ispartof>Applied Mechanics and Materials, 2014-07, Vol.596 (Mechatronics and Industrial Informatics II), p.251-258</ispartof><rights>2014 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. Jul 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3041-a6f7a552facd469dcf5f4e5a3b7c314d98297df2358d2082c36abc6d70cf05e3</citedby><cites>FETCH-LOGICAL-c3041-a6f7a552facd469dcf5f4e5a3b7c314d98297df2358d2082c36abc6d70cf05e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/3335?width=600</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wang, Cun Song</creatorcontrib><creatorcontrib>Yang, Bao Jian</creatorcontrib><creatorcontrib>Yin, Lin Fei</creatorcontrib><creatorcontrib>Peng, Chen</creatorcontrib><creatorcontrib>Dai, Ji Yang</creatorcontrib><title>Research on Multi-Agent Formation’s Obstacle Avoidance Problem Based on Three-Dimensional Vectorial Artificial Potential Field Method</title><title>Applied Mechanics and Materials</title><description>In order to solve the obstacle avoidance problem when the Multi-Agent formation get through the area full of obstacles, improved the traditional Artificial Potential Field method, add the vectorial information to the agent’s model, presented the Three-Dimensional Vectorial Artificial Potential Field method (TDVAPF). Firstly, improved the model of agent, obstacle and target; then, improved the Multi-Agent formation motion model, the Multi-Agent formation’s structure is “pyramid” structure; Finally, improved the agent’s force, add the “rotational force” to the agent’s force, it makes agent avoid the “local trouble”. The numerical simulation verified the correctness and effectiveness of the TDVAPF method in Multi-Agent formation’s obstacle avoidance problem.</description><subject>Formations</subject><subject>Mathematical models</subject><subject>Multiagent systems</subject><subject>Obstacle avoidance</subject><subject>Obstacles</subject><subject>Potential fields</subject><subject>Three dimensional</subject><subject>Three dimensional models</subject><issn>1660-9336</issn><issn>1662-7482</issn><issn>1662-7482</issn><isbn>9783038351764</isbn><isbn>3038351768</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNkc-KFDEQxhv_gOu67xAQxEv35n-nL2K7OirssIsMXkMmqXaydHfWJOPgzZvP4Ov5JKZ3BMWTp_qgvvqqil9VPSO44Ziq88Ph0CTrYc5-8LaZIZ_363UjOtlQQe5VJ0RKWrdc0fvVWdcqhpligrSSP7jr4bpjTD6qHqd0g7HkhKuT6vsHSGCi3aEwo_V-zL7uP5UVaBXiZLIP889vPxK62qZs7Aio_xK8M7MFdB3DdoQJvTIJ3DK92UWA-rWfYE5lzozoI9gcoi-qj3dHL_I65OWFolYeRofWkHfBPakeDmZMcPa7nlab1ZvNxbv68urt-4v-srYMc1IbObRGCDoY67jsnB3EwEEYtm0tI9x1inatGygTylGsqGXSbK10LbYDFsBOq-fH2NsYPu8hZT35ZGEczQxhnzQRssWdbFVXrE__sd6EfSxvLS4uVEcUl8X14uiyMaQUYdC30U8mftUE6wWbLtj0H2y6YNMFmy7YdMFWAl4eA3I0c8pgd3_t-b-IX1ZCqcE</recordid><startdate>20140701</startdate><enddate>20140701</enddate><creator>Wang, Cun Song</creator><creator>Yang, Bao Jian</creator><creator>Yin, Lin Fei</creator><creator>Peng, Chen</creator><creator>Dai, Ji Yang</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20140701</creationdate><title>Research on Multi-Agent Formation’s Obstacle Avoidance Problem Based on Three-Dimensional Vectorial Artificial Potential Field Method</title><author>Wang, Cun Song ; Yang, Bao Jian ; Yin, Lin Fei ; Peng, Chen ; Dai, Ji Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3041-a6f7a552facd469dcf5f4e5a3b7c314d98297df2358d2082c36abc6d70cf05e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Formations</topic><topic>Mathematical models</topic><topic>Multiagent systems</topic><topic>Obstacle avoidance</topic><topic>Obstacles</topic><topic>Potential fields</topic><topic>Three dimensional</topic><topic>Three dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Cun Song</creatorcontrib><creatorcontrib>Yang, Bao Jian</creatorcontrib><creatorcontrib>Yin, Lin Fei</creatorcontrib><creatorcontrib>Peng, Chen</creatorcontrib><creatorcontrib>Dai, Ji Yang</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Applied Mechanics and Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Cun Song</au><au>Yang, Bao Jian</au><au>Yin, Lin Fei</au><au>Peng, Chen</au><au>Dai, Ji Yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Research on Multi-Agent Formation’s Obstacle Avoidance Problem Based on Three-Dimensional Vectorial Artificial Potential Field Method</atitle><jtitle>Applied Mechanics and Materials</jtitle><date>2014-07-01</date><risdate>2014</risdate><volume>596</volume><issue>Mechatronics and Industrial Informatics II</issue><spage>251</spage><epage>258</epage><pages>251-258</pages><issn>1660-9336</issn><issn>1662-7482</issn><eissn>1662-7482</eissn><isbn>9783038351764</isbn><isbn>3038351768</isbn><abstract>In order to solve the obstacle avoidance problem when the Multi-Agent formation get through the area full of obstacles, improved the traditional Artificial Potential Field method, add the vectorial information to the agent’s model, presented the Three-Dimensional Vectorial Artificial Potential Field method (TDVAPF). Firstly, improved the model of agent, obstacle and target; then, improved the Multi-Agent formation motion model, the Multi-Agent formation’s structure is “pyramid” structure; Finally, improved the agent’s force, add the “rotational force” to the agent’s force, it makes agent avoid the “local trouble”. The numerical simulation verified the correctness and effectiveness of the TDVAPF method in Multi-Agent formation’s obstacle avoidance problem.</abstract><cop>Zurich</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/AMM.596.251</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1660-9336
ispartof Applied Mechanics and Materials, 2014-07, Vol.596 (Mechatronics and Industrial Informatics II), p.251-258
issn 1660-9336
1662-7482
1662-7482
language eng
recordid cdi_proquest_miscellaneous_1567096789
source Scientific.net Journals
subjects Formations
Mathematical models
Multiagent systems
Obstacle avoidance
Obstacles
Potential fields
Three dimensional
Three dimensional models
title Research on Multi-Agent Formation’s Obstacle Avoidance Problem Based on Three-Dimensional Vectorial Artificial Potential Field Method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T00%3A13%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Research%20on%20Multi-Agent%20Formation%E2%80%99s%20Obstacle%20Avoidance%20Problem%20Based%20on%20Three-Dimensional%20Vectorial%20Artificial%20Potential%20Field%20Method&rft.jtitle=Applied%20Mechanics%20and%20Materials&rft.au=Wang,%20Cun%20Song&rft.date=2014-07-01&rft.volume=596&rft.issue=Mechatronics%20and%20Industrial%20Informatics%20II&rft.spage=251&rft.epage=258&rft.pages=251-258&rft.issn=1660-9336&rft.eissn=1662-7482&rft.isbn=9783038351764&rft.isbn_list=3038351768&rft_id=info:doi/10.4028/www.scientific.net/AMM.596.251&rft_dat=%3Cproquest_cross%3E3377135741%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1545891846&rft_id=info:pmid/&rfr_iscdi=true