Calcite surface structure and reactivity: molecular dynamics simulations and macroscopic surface modelling of the calcite―water interface
Calcite-water interactions are important not only in carbon sequestration and the global carbon cycle, but also in contaminant behaviour in calcite-bearing host rock and in many industrial applications. Here we quantify the effect of variations in surface structure on calcite surface reactivity. Fir...
Gespeichert in:
Veröffentlicht in: | Physical chemistry chemical physics : PCCP 2012-11, Vol.14 (43), p.15145-15157 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15157 |
---|---|
container_issue | 43 |
container_start_page | 15145 |
container_title | Physical chemistry chemical physics : PCCP |
container_volume | 14 |
creator | WOLTHERS, M DITOMMASO, D DU, Z DE LEEUW, N. H |
description | Calcite-water interactions are important not only in carbon sequestration and the global carbon cycle, but also in contaminant behaviour in calcite-bearing host rock and in many industrial applications. Here we quantify the effect of variations in surface structure on calcite surface reactivity. Firstly, we employ classical Molecular Dynamics simulations of calcite surfaces containing an etch pit and a growth terrace, to show that the local environment in water around structurally different surface sites is distinct. In addition to observing the expected formation of more calcium-water interactions and hydrogen-bonds at lower-coordinated sites, we also observed subtle differences in hydrogen bonding around acute versus obtuse edges and corners. We subsequently used this information to refine the protonation constants for the calcite surface sites, according to the Charge Distribution MUltiSite Ion Complexation (CD-MUSIC) approach. The subtle differences in hydrogen bonding translate into markedly different charging behaviour versus pH, in particular for acute versus obtuse corner sites. The results show quantitatively that calcite surface reactivity is directly related to surface topography. The information obtained in this study is not only crucial for the improvement of existing macroscopic surface models of the reactivity of calcite towards contaminants, but also improves our atomic-level understanding of mineral-water interactions. |
doi_str_mv | 10.1039/c2cp42290e |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1567095595</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1567095595</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-fe41c88f5a6b40cc26a02f2056fcf73f9af358eeb201295aa25abac8868777123</originalsourceid><addsrcrecordid>eNqFkU1PG0EMhkdVUfloL_0B1VwqIaSA53N3e0NRS5EicYHzynFmYKr9SGdmQblx58wf5JewaUI49mJb1uPXll_Gvgo4FaCqM5K01FJW4D6wA6GtmlRQ6o-7urD77DClPwAgjFCf2L5UoCWU5oA9TbGhkB1PQ_RIY85xoDxEx7Fb8OiQcrgPefWDt33jaGgw8sWqwzZQ4im0YyOHvkv_8BYp9on6ZaCdYNsvXNOE7pb3nuc7x2mz8eXx-QGzizx0Y1yjn9mexya5L9t8xG5-_bye_p7Mri4up-ezCanS5ol3WlBZeoN2roFIWgTpJRjryRfKV-iVKZ2bSxCyMojS4BzHCVsWRSGkOmLHG91l7P8OLuW6DYnGI7Fz_ZBqYWwBlTGV-T8qhC5Ag12rnmzQ9QtSdL5extBiXNUC6rVP9btPI_xtqzvMW7fYoW_GjMD3LYBpfJiP2FFI75w12siyUq8YWJ7w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1114704062</pqid></control><display><type>article</type><title>Calcite surface structure and reactivity: molecular dynamics simulations and macroscopic surface modelling of the calcite―water interface</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>WOLTHERS, M ; DITOMMASO, D ; DU, Z ; DE LEEUW, N. H</creator><creatorcontrib>WOLTHERS, M ; DITOMMASO, D ; DU, Z ; DE LEEUW, N. H</creatorcontrib><description>Calcite-water interactions are important not only in carbon sequestration and the global carbon cycle, but also in contaminant behaviour in calcite-bearing host rock and in many industrial applications. Here we quantify the effect of variations in surface structure on calcite surface reactivity. Firstly, we employ classical Molecular Dynamics simulations of calcite surfaces containing an etch pit and a growth terrace, to show that the local environment in water around structurally different surface sites is distinct. In addition to observing the expected formation of more calcium-water interactions and hydrogen-bonds at lower-coordinated sites, we also observed subtle differences in hydrogen bonding around acute versus obtuse edges and corners. We subsequently used this information to refine the protonation constants for the calcite surface sites, according to the Charge Distribution MUltiSite Ion Complexation (CD-MUSIC) approach. The subtle differences in hydrogen bonding translate into markedly different charging behaviour versus pH, in particular for acute versus obtuse corner sites. The results show quantitatively that calcite surface reactivity is directly related to surface topography. The information obtained in this study is not only crucial for the improvement of existing macroscopic surface models of the reactivity of calcite towards contaminants, but also improves our atomic-level understanding of mineral-water interactions.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c2cp42290e</identifier><identifier>PMID: 23042085</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Calcite ; Charge distribution ; Chemistry ; Contaminants ; Corners ; Exact sciences and technology ; General and physical chemistry ; Hydrogen bonding ; Molecular dynamics ; Surface physical chemistry ; Surface structure</subject><ispartof>Physical chemistry chemical physics : PCCP, 2012-11, Vol.14 (43), p.15145-15157</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-fe41c88f5a6b40cc26a02f2056fcf73f9af358eeb201295aa25abac8868777123</citedby><cites>FETCH-LOGICAL-c386t-fe41c88f5a6b40cc26a02f2056fcf73f9af358eeb201295aa25abac8868777123</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26545289$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23042085$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>WOLTHERS, M</creatorcontrib><creatorcontrib>DITOMMASO, D</creatorcontrib><creatorcontrib>DU, Z</creatorcontrib><creatorcontrib>DE LEEUW, N. H</creatorcontrib><title>Calcite surface structure and reactivity: molecular dynamics simulations and macroscopic surface modelling of the calcite―water interface</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>Calcite-water interactions are important not only in carbon sequestration and the global carbon cycle, but also in contaminant behaviour in calcite-bearing host rock and in many industrial applications. Here we quantify the effect of variations in surface structure on calcite surface reactivity. Firstly, we employ classical Molecular Dynamics simulations of calcite surfaces containing an etch pit and a growth terrace, to show that the local environment in water around structurally different surface sites is distinct. In addition to observing the expected formation of more calcium-water interactions and hydrogen-bonds at lower-coordinated sites, we also observed subtle differences in hydrogen bonding around acute versus obtuse edges and corners. We subsequently used this information to refine the protonation constants for the calcite surface sites, according to the Charge Distribution MUltiSite Ion Complexation (CD-MUSIC) approach. The subtle differences in hydrogen bonding translate into markedly different charging behaviour versus pH, in particular for acute versus obtuse corner sites. The results show quantitatively that calcite surface reactivity is directly related to surface topography. The information obtained in this study is not only crucial for the improvement of existing macroscopic surface models of the reactivity of calcite towards contaminants, but also improves our atomic-level understanding of mineral-water interactions.</description><subject>Calcite</subject><subject>Charge distribution</subject><subject>Chemistry</subject><subject>Contaminants</subject><subject>Corners</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Hydrogen bonding</subject><subject>Molecular dynamics</subject><subject>Surface physical chemistry</subject><subject>Surface structure</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkU1PG0EMhkdVUfloL_0B1VwqIaSA53N3e0NRS5EicYHzynFmYKr9SGdmQblx58wf5JewaUI49mJb1uPXll_Gvgo4FaCqM5K01FJW4D6wA6GtmlRQ6o-7urD77DClPwAgjFCf2L5UoCWU5oA9TbGhkB1PQ_RIY85xoDxEx7Fb8OiQcrgPefWDt33jaGgw8sWqwzZQ4im0YyOHvkv_8BYp9on6ZaCdYNsvXNOE7pb3nuc7x2mz8eXx-QGzizx0Y1yjn9mexya5L9t8xG5-_bye_p7Mri4up-ezCanS5ol3WlBZeoN2roFIWgTpJRjryRfKV-iVKZ2bSxCyMojS4BzHCVsWRSGkOmLHG91l7P8OLuW6DYnGI7Fz_ZBqYWwBlTGV-T8qhC5Ag12rnmzQ9QtSdL5extBiXNUC6rVP9btPI_xtqzvMW7fYoW_GjMD3LYBpfJiP2FFI75w12siyUq8YWJ7w</recordid><startdate>20121121</startdate><enddate>20121121</enddate><creator>WOLTHERS, M</creator><creator>DITOMMASO, D</creator><creator>DU, Z</creator><creator>DE LEEUW, N. H</creator><general>Royal Society of Chemistry</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SC</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20121121</creationdate><title>Calcite surface structure and reactivity: molecular dynamics simulations and macroscopic surface modelling of the calcite―water interface</title><author>WOLTHERS, M ; DITOMMASO, D ; DU, Z ; DE LEEUW, N. H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-fe41c88f5a6b40cc26a02f2056fcf73f9af358eeb201295aa25abac8868777123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Calcite</topic><topic>Charge distribution</topic><topic>Chemistry</topic><topic>Contaminants</topic><topic>Corners</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Hydrogen bonding</topic><topic>Molecular dynamics</topic><topic>Surface physical chemistry</topic><topic>Surface structure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>WOLTHERS, M</creatorcontrib><creatorcontrib>DITOMMASO, D</creatorcontrib><creatorcontrib>DU, Z</creatorcontrib><creatorcontrib>DE LEEUW, N. H</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>WOLTHERS, M</au><au>DITOMMASO, D</au><au>DU, Z</au><au>DE LEEUW, N. H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Calcite surface structure and reactivity: molecular dynamics simulations and macroscopic surface modelling of the calcite―water interface</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2012-11-21</date><risdate>2012</risdate><volume>14</volume><issue>43</issue><spage>15145</spage><epage>15157</epage><pages>15145-15157</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>Calcite-water interactions are important not only in carbon sequestration and the global carbon cycle, but also in contaminant behaviour in calcite-bearing host rock and in many industrial applications. Here we quantify the effect of variations in surface structure on calcite surface reactivity. Firstly, we employ classical Molecular Dynamics simulations of calcite surfaces containing an etch pit and a growth terrace, to show that the local environment in water around structurally different surface sites is distinct. In addition to observing the expected formation of more calcium-water interactions and hydrogen-bonds at lower-coordinated sites, we also observed subtle differences in hydrogen bonding around acute versus obtuse edges and corners. We subsequently used this information to refine the protonation constants for the calcite surface sites, according to the Charge Distribution MUltiSite Ion Complexation (CD-MUSIC) approach. The subtle differences in hydrogen bonding translate into markedly different charging behaviour versus pH, in particular for acute versus obtuse corner sites. The results show quantitatively that calcite surface reactivity is directly related to surface topography. The information obtained in this study is not only crucial for the improvement of existing macroscopic surface models of the reactivity of calcite towards contaminants, but also improves our atomic-level understanding of mineral-water interactions.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><pmid>23042085</pmid><doi>10.1039/c2cp42290e</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1463-9076 |
ispartof | Physical chemistry chemical physics : PCCP, 2012-11, Vol.14 (43), p.15145-15157 |
issn | 1463-9076 1463-9084 |
language | eng |
recordid | cdi_proquest_miscellaneous_1567095595 |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Calcite Charge distribution Chemistry Contaminants Corners Exact sciences and technology General and physical chemistry Hydrogen bonding Molecular dynamics Surface physical chemistry Surface structure |
title | Calcite surface structure and reactivity: molecular dynamics simulations and macroscopic surface modelling of the calcite―water interface |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T08%3A35%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Calcite%20surface%20structure%20and%20reactivity:%20molecular%20dynamics%20simulations%20and%20macroscopic%20surface%20modelling%20of%20the%20calcite%E2%80%95water%20interface&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=WOLTHERS,%20M&rft.date=2012-11-21&rft.volume=14&rft.issue=43&rft.spage=15145&rft.epage=15157&rft.pages=15145-15157&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c2cp42290e&rft_dat=%3Cproquest_cross%3E1567095595%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1114704062&rft_id=info:pmid/23042085&rfr_iscdi=true |