Harmonic functions of general graph Laplacians

We study harmonic functions on general weighted graphs which allow for a compatible intrinsic metric. We prove an L p Liouville type theorem which is a quantitative integral L p estimate of harmonic functions analogous to Karp’s theorem for Riemannian manifolds. As corollaries we obtain Yau’s L p -L...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Calculus of variations and partial differential equations 2014-09, Vol.51 (1-2), p.343-362
Hauptverfasser: Hua, Bobo, Keller, Matthias
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 362
container_issue 1-2
container_start_page 343
container_title Calculus of variations and partial differential equations
container_volume 51
creator Hua, Bobo
Keller, Matthias
description We study harmonic functions on general weighted graphs which allow for a compatible intrinsic metric. We prove an L p Liouville type theorem which is a quantitative integral L p estimate of harmonic functions analogous to Karp’s theorem for Riemannian manifolds. As corollaries we obtain Yau’s L p -Liouville type theorem on graphs, identify the domain of the generator of the semigroup on L p and get a criterion for recurrence. As a side product, we show an analogue of Yau’s L p Caccioppoli inequality. Furthermore, we derive various Liouville type results for harmonic functions on graphs and harmonic maps from graphs into Hadamard spaces.
doi_str_mv 10.1007/s00526-013-0677-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1567091561</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3400392081</sourcerecordid><originalsourceid>FETCH-LOGICAL-c485t-9ed28a630ff1aca13d50694713a24d2840b299b46277f8230988ab74c9271b323</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EEqXwA9gisbC4nD_ijxFV0CJVYoHZclynpErtYDcD_x5XYUBILHfDPe_d6UHolsCCAMiHDFBTgYEwDEJKLM7QjHBGMShWn6MZaM4xFUJfoquc9wCkVpTP0GJt0yGGzlXtGNyxiyFXsa12Pvhk-2qX7PBRbezQW9fZkK_RRWv77G9--hy9Pz-9Ldd487p6WT5usOOqPmLtt1RZwaBtiXWWsG0NQnNJmKW8jDg0VOuGCyplqygDrZRtJHeaStIwyubofto7pPg5-nw0hy473_c2-DhmQ2ohQZdKCnr3B93HMYXyXaFqKjUphwtFJsqlmHPyrRlSd7DpyxAwJ4NmMmiKQXMyaETJ0CmTCxt2Pv3a_G_oG3HNcEY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1552791947</pqid></control><display><type>article</type><title>Harmonic functions of general graph Laplacians</title><source>Springer Nature - Complete Springer Journals</source><creator>Hua, Bobo ; Keller, Matthias</creator><creatorcontrib>Hua, Bobo ; Keller, Matthias</creatorcontrib><description>We study harmonic functions on general weighted graphs which allow for a compatible intrinsic metric. We prove an L p Liouville type theorem which is a quantitative integral L p estimate of harmonic functions analogous to Karp’s theorem for Riemannian manifolds. As corollaries we obtain Yau’s L p -Liouville type theorem on graphs, identify the domain of the generator of the semigroup on L p and get a criterion for recurrence. As a side product, we show an analogue of Yau’s L p Caccioppoli inequality. Furthermore, we derive various Liouville type results for harmonic functions on graphs and harmonic maps from graphs into Hadamard spaces.</description><identifier>ISSN: 0944-2669</identifier><identifier>EISSN: 1432-0835</identifier><identifier>DOI: 10.1007/s00526-013-0677-6</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analysis ; Calculus of variations ; Calculus of Variations and Optimal Control; Optimization ; Control ; Criteria ; Estimates ; Generators ; Graph algorithms ; Graphs ; Harmonic analysis ; Harmonic functions ; Harmonics ; Laplace transforms ; Mathematical and Computational Physics ; Mathematical functions ; Mathematics ; Mathematics and Statistics ; Systems Theory ; Texts ; Theorems ; Theoretical</subject><ispartof>Calculus of variations and partial differential equations, 2014-09, Vol.51 (1-2), p.343-362</ispartof><rights>Springer-Verlag Berlin Heidelberg 2013</rights><rights>Springer-Verlag Berlin Heidelberg 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c485t-9ed28a630ff1aca13d50694713a24d2840b299b46277f8230988ab74c9271b323</citedby><cites>FETCH-LOGICAL-c485t-9ed28a630ff1aca13d50694713a24d2840b299b46277f8230988ab74c9271b323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00526-013-0677-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00526-013-0677-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Hua, Bobo</creatorcontrib><creatorcontrib>Keller, Matthias</creatorcontrib><title>Harmonic functions of general graph Laplacians</title><title>Calculus of variations and partial differential equations</title><addtitle>Calc. Var</addtitle><description>We study harmonic functions on general weighted graphs which allow for a compatible intrinsic metric. We prove an L p Liouville type theorem which is a quantitative integral L p estimate of harmonic functions analogous to Karp’s theorem for Riemannian manifolds. As corollaries we obtain Yau’s L p -Liouville type theorem on graphs, identify the domain of the generator of the semigroup on L p and get a criterion for recurrence. As a side product, we show an analogue of Yau’s L p Caccioppoli inequality. Furthermore, we derive various Liouville type results for harmonic functions on graphs and harmonic maps from graphs into Hadamard spaces.</description><subject>Analysis</subject><subject>Calculus of variations</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Control</subject><subject>Criteria</subject><subject>Estimates</subject><subject>Generators</subject><subject>Graph algorithms</subject><subject>Graphs</subject><subject>Harmonic analysis</subject><subject>Harmonic functions</subject><subject>Harmonics</subject><subject>Laplace transforms</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical functions</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Systems Theory</subject><subject>Texts</subject><subject>Theorems</subject><subject>Theoretical</subject><issn>0944-2669</issn><issn>1432-0835</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAQhi0EEqXwA9gisbC4nD_ijxFV0CJVYoHZclynpErtYDcD_x5XYUBILHfDPe_d6UHolsCCAMiHDFBTgYEwDEJKLM7QjHBGMShWn6MZaM4xFUJfoquc9wCkVpTP0GJt0yGGzlXtGNyxiyFXsa12Pvhk-2qX7PBRbezQW9fZkK_RRWv77G9--hy9Pz-9Ldd487p6WT5usOOqPmLtt1RZwaBtiXWWsG0NQnNJmKW8jDg0VOuGCyplqygDrZRtJHeaStIwyubofto7pPg5-nw0hy473_c2-DhmQ2ohQZdKCnr3B93HMYXyXaFqKjUphwtFJsqlmHPyrRlSd7DpyxAwJ4NmMmiKQXMyaETJ0CmTCxt2Pv3a_G_oG3HNcEY</recordid><startdate>20140901</startdate><enddate>20140901</enddate><creator>Hua, Bobo</creator><creator>Keller, Matthias</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20140901</creationdate><title>Harmonic functions of general graph Laplacians</title><author>Hua, Bobo ; Keller, Matthias</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c485t-9ed28a630ff1aca13d50694713a24d2840b299b46277f8230988ab74c9271b323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Analysis</topic><topic>Calculus of variations</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Control</topic><topic>Criteria</topic><topic>Estimates</topic><topic>Generators</topic><topic>Graph algorithms</topic><topic>Graphs</topic><topic>Harmonic analysis</topic><topic>Harmonic functions</topic><topic>Harmonics</topic><topic>Laplace transforms</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical functions</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Systems Theory</topic><topic>Texts</topic><topic>Theorems</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hua, Bobo</creatorcontrib><creatorcontrib>Keller, Matthias</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Calculus of variations and partial differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hua, Bobo</au><au>Keller, Matthias</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Harmonic functions of general graph Laplacians</atitle><jtitle>Calculus of variations and partial differential equations</jtitle><stitle>Calc. Var</stitle><date>2014-09-01</date><risdate>2014</risdate><volume>51</volume><issue>1-2</issue><spage>343</spage><epage>362</epage><pages>343-362</pages><issn>0944-2669</issn><eissn>1432-0835</eissn><abstract>We study harmonic functions on general weighted graphs which allow for a compatible intrinsic metric. We prove an L p Liouville type theorem which is a quantitative integral L p estimate of harmonic functions analogous to Karp’s theorem for Riemannian manifolds. As corollaries we obtain Yau’s L p -Liouville type theorem on graphs, identify the domain of the generator of the semigroup on L p and get a criterion for recurrence. As a side product, we show an analogue of Yau’s L p Caccioppoli inequality. Furthermore, we derive various Liouville type results for harmonic functions on graphs and harmonic maps from graphs into Hadamard spaces.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00526-013-0677-6</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0944-2669
ispartof Calculus of variations and partial differential equations, 2014-09, Vol.51 (1-2), p.343-362
issn 0944-2669
1432-0835
language eng
recordid cdi_proquest_miscellaneous_1567091561
source Springer Nature - Complete Springer Journals
subjects Analysis
Calculus of variations
Calculus of Variations and Optimal Control
Optimization
Control
Criteria
Estimates
Generators
Graph algorithms
Graphs
Harmonic analysis
Harmonic functions
Harmonics
Laplace transforms
Mathematical and Computational Physics
Mathematical functions
Mathematics
Mathematics and Statistics
Systems Theory
Texts
Theorems
Theoretical
title Harmonic functions of general graph Laplacians
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T22%3A04%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Harmonic%20functions%20of%20general%20graph%20Laplacians&rft.jtitle=Calculus%20of%20variations%20and%20partial%20differential%20equations&rft.au=Hua,%20Bobo&rft.date=2014-09-01&rft.volume=51&rft.issue=1-2&rft.spage=343&rft.epage=362&rft.pages=343-362&rft.issn=0944-2669&rft.eissn=1432-0835&rft_id=info:doi/10.1007/s00526-013-0677-6&rft_dat=%3Cproquest_cross%3E3400392081%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1552791947&rft_id=info:pmid/&rfr_iscdi=true