Transient thermal performance analysis of micro heat pipes

A theoretical analysis of transient fluid flow and heat transfer in a triangular micro heat pipes (MHP) has been conducted to study the thermal response characteristics. By introducing the system identification theory, the quantitative evaluation of the MHP's transient thermal performance is re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied thermal engineering 2013-09, Vol.58 (1-2), p.585-593
Hauptverfasser: Liu, Xiangdong, Chen, Yongping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A theoretical analysis of transient fluid flow and heat transfer in a triangular micro heat pipes (MHP) has been conducted to study the thermal response characteristics. By introducing the system identification theory, the quantitative evaluation of the MHP's transient thermal performance is realized. The results indicate that the evaporation and condensation processes are both extended into the adiabatic section. During the start-up process, the capillary radius along axial direction of MHP decreases drastically while the liquid velocity increases quickly at the early transient stage and an approximately linear decrease in wall temperature arises along the axial direction. The MHP behaves as a first-order LTI control system with the constant input power as the 'step input' and the evaporator wall temperature as the 'output'. Two corresponding evaluation criteria derived from the control theory, time constant and temperature constant, are able to quantitatively evaluate the thermal response speed and temperature level of MHP under start-up, which show that a larger triangular groove's hydraulic diameter within 0.18–0.42 mm is able to accelerate the start-up and decrease the start-up temperature level of MHP. Additionally, the MHP starts up fastest using the fluid of ethanol and most slowly using the working fluid of methanol, and the start-up temperature reaches maximum level for acetone and minimum level for the methanol. •Transient thermal response of micro heat pipe is simulated by an improved model.•Control theory is introduced to quantify the thermal response of micro heat pipe.•Evaluation criteria are proposed to represent thermal response of micro heat pipe.•Effects of groove dimensions and working fluids on start-up of micro heat pipe are evaluated.
ISSN:1359-4311
DOI:10.1016/j.applthermaleng.2013.04.025