Iterative Breast Tomosynthesis Image Reconstruction

In digital tomosynthesis imaging, multiple projections of an object are obtained along a small range of different incident angles in order to reconstruct a pseudo-3D representation of the object. In this paper we discuss a mathematical model for polyenergetic digital breast tomosynthesis image recon...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on scientific computing 2013-01, Vol.35 (5), p.S192-S208
Hauptverfasser: Bustamante, Veronica Mejia, Nagy, James G., Feng, Steve S. J., Sechopoulos, Ioannis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page S208
container_issue 5
container_start_page S192
container_title SIAM journal on scientific computing
container_volume 35
creator Bustamante, Veronica Mejia
Nagy, James G.
Feng, Steve S. J.
Sechopoulos, Ioannis
description In digital tomosynthesis imaging, multiple projections of an object are obtained along a small range of different incident angles in order to reconstruct a pseudo-3D representation of the object. In this paper we discuss a mathematical model for polyenergetic digital breast tomosynthesis image reconstruction that explicitly takes into account various materials composing the object and the polyenergetic nature of the x-ray beam. Our model allows for computing weight fractions of the individual materials that make up the object, which can then be used to reconstruct pseudo-3D images. The reconstruction process requires solving a large-scale inverse problem, which is done with a gradient descent iteration. Regularization is enforced by truncating the iteration. The mathematical model is described in detail, as is an efficient approach to compute the gradient of the objective function. The effectiveness of our approach is illustrated with real data taken of an object with known materials that simulates an actual breast. [PUBLICATION ABSTRACT]
doi_str_mv 10.1137/120881440
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1567077303</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3110465821</sourcerecordid><originalsourceid>FETCH-LOGICAL-c290t-d331dfb955d25bc6f0573a20eeabbe862b914a1b788f2fb9a706e1ba874cdc1f3</originalsourceid><addsrcrecordid>eNpd0E1LxDAQgOEgCq6rB_9BwYseqjNJ06RHXfwoLAiynkuaTrXLtlmTVNh_b5cVD55mDg_D8DJ2iXCLKNQdctAaswyO2AyhkKnCQh3v9zxLNVfylJ2FsAbAPCv4jIkykjex-6bkwZMJMVm53oXdED8pdCEpe_NByRtZN4ToRxs7N5yzk9ZsAl38zjl7f3pcLV7S5etzubhfppYXENNGCGzaupCy4bK2eQtSCcOByNQ16ZzXBWYGa6V1yydnFOSEtdEqs43FVszZ9eHu1ruvkUKs-i5Y2mzMQG4MFcpcgVICxESv_tG1G_0wfVdNMaQqFICe1M1BWe9C8NRWW9_1xu8qhGqfr_rLJ34AUzNg4g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1445797008</pqid></control><display><type>article</type><title>Iterative Breast Tomosynthesis Image Reconstruction</title><source>SIAM Journals Online</source><creator>Bustamante, Veronica Mejia ; Nagy, James G. ; Feng, Steve S. J. ; Sechopoulos, Ioannis</creator><creatorcontrib>Bustamante, Veronica Mejia ; Nagy, James G. ; Feng, Steve S. J. ; Sechopoulos, Ioannis</creatorcontrib><description>In digital tomosynthesis imaging, multiple projections of an object are obtained along a small range of different incident angles in order to reconstruct a pseudo-3D representation of the object. In this paper we discuss a mathematical model for polyenergetic digital breast tomosynthesis image reconstruction that explicitly takes into account various materials composing the object and the polyenergetic nature of the x-ray beam. Our model allows for computing weight fractions of the individual materials that make up the object, which can then be used to reconstruct pseudo-3D images. The reconstruction process requires solving a large-scale inverse problem, which is done with a gradient descent iteration. Regularization is enforced by truncating the iteration. The mathematical model is described in detail, as is an efficient approach to compute the gradient of the objective function. The effectiveness of our approach is illustrated with real data taken of an object with known materials that simulates an actual breast. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 1064-8275</identifier><identifier>EISSN: 1095-7197</identifier><identifier>DOI: 10.1137/120881440</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Algorithms ; Applied mathematics ; Beams (radiation) ; Breast ; Computation ; Digital ; Image reconstruction ; Inverse problems ; Iterative methods ; Mathematical models ; Noise ; Random variables ; Reconstruction ; Sensors ; Three dimensional imaging ; Tomography</subject><ispartof>SIAM journal on scientific computing, 2013-01, Vol.35 (5), p.S192-S208</ispartof><rights>2013, Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c290t-d331dfb955d25bc6f0573a20eeabbe862b914a1b788f2fb9a706e1ba874cdc1f3</citedby><cites>FETCH-LOGICAL-c290t-d331dfb955d25bc6f0573a20eeabbe862b914a1b788f2fb9a706e1ba874cdc1f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3184,27924,27925</link.rule.ids></links><search><creatorcontrib>Bustamante, Veronica Mejia</creatorcontrib><creatorcontrib>Nagy, James G.</creatorcontrib><creatorcontrib>Feng, Steve S. J.</creatorcontrib><creatorcontrib>Sechopoulos, Ioannis</creatorcontrib><title>Iterative Breast Tomosynthesis Image Reconstruction</title><title>SIAM journal on scientific computing</title><description>In digital tomosynthesis imaging, multiple projections of an object are obtained along a small range of different incident angles in order to reconstruct a pseudo-3D representation of the object. In this paper we discuss a mathematical model for polyenergetic digital breast tomosynthesis image reconstruction that explicitly takes into account various materials composing the object and the polyenergetic nature of the x-ray beam. Our model allows for computing weight fractions of the individual materials that make up the object, which can then be used to reconstruct pseudo-3D images. The reconstruction process requires solving a large-scale inverse problem, which is done with a gradient descent iteration. Regularization is enforced by truncating the iteration. The mathematical model is described in detail, as is an efficient approach to compute the gradient of the objective function. The effectiveness of our approach is illustrated with real data taken of an object with known materials that simulates an actual breast. [PUBLICATION ABSTRACT]</description><subject>Algorithms</subject><subject>Applied mathematics</subject><subject>Beams (radiation)</subject><subject>Breast</subject><subject>Computation</subject><subject>Digital</subject><subject>Image reconstruction</subject><subject>Inverse problems</subject><subject>Iterative methods</subject><subject>Mathematical models</subject><subject>Noise</subject><subject>Random variables</subject><subject>Reconstruction</subject><subject>Sensors</subject><subject>Three dimensional imaging</subject><subject>Tomography</subject><issn>1064-8275</issn><issn>1095-7197</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpd0E1LxDAQgOEgCq6rB_9BwYseqjNJ06RHXfwoLAiynkuaTrXLtlmTVNh_b5cVD55mDg_D8DJ2iXCLKNQdctAaswyO2AyhkKnCQh3v9zxLNVfylJ2FsAbAPCv4jIkykjex-6bkwZMJMVm53oXdED8pdCEpe_NByRtZN4ToRxs7N5yzk9ZsAl38zjl7f3pcLV7S5etzubhfppYXENNGCGzaupCy4bK2eQtSCcOByNQ16ZzXBWYGa6V1yydnFOSEtdEqs43FVszZ9eHu1ruvkUKs-i5Y2mzMQG4MFcpcgVICxESv_tG1G_0wfVdNMaQqFICe1M1BWe9C8NRWW9_1xu8qhGqfr_rLJ34AUzNg4g</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Bustamante, Veronica Mejia</creator><creator>Nagy, James G.</creator><creator>Feng, Steve S. J.</creator><creator>Sechopoulos, Ioannis</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20130101</creationdate><title>Iterative Breast Tomosynthesis Image Reconstruction</title><author>Bustamante, Veronica Mejia ; Nagy, James G. ; Feng, Steve S. J. ; Sechopoulos, Ioannis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c290t-d331dfb955d25bc6f0573a20eeabbe862b914a1b788f2fb9a706e1ba874cdc1f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Applied mathematics</topic><topic>Beams (radiation)</topic><topic>Breast</topic><topic>Computation</topic><topic>Digital</topic><topic>Image reconstruction</topic><topic>Inverse problems</topic><topic>Iterative methods</topic><topic>Mathematical models</topic><topic>Noise</topic><topic>Random variables</topic><topic>Reconstruction</topic><topic>Sensors</topic><topic>Three dimensional imaging</topic><topic>Tomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bustamante, Veronica Mejia</creatorcontrib><creatorcontrib>Nagy, James G.</creatorcontrib><creatorcontrib>Feng, Steve S. J.</creatorcontrib><creatorcontrib>Sechopoulos, Ioannis</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>SIAM journal on scientific computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bustamante, Veronica Mejia</au><au>Nagy, James G.</au><au>Feng, Steve S. J.</au><au>Sechopoulos, Ioannis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Iterative Breast Tomosynthesis Image Reconstruction</atitle><jtitle>SIAM journal on scientific computing</jtitle><date>2013-01-01</date><risdate>2013</risdate><volume>35</volume><issue>5</issue><spage>S192</spage><epage>S208</epage><pages>S192-S208</pages><issn>1064-8275</issn><eissn>1095-7197</eissn><abstract>In digital tomosynthesis imaging, multiple projections of an object are obtained along a small range of different incident angles in order to reconstruct a pseudo-3D representation of the object. In this paper we discuss a mathematical model for polyenergetic digital breast tomosynthesis image reconstruction that explicitly takes into account various materials composing the object and the polyenergetic nature of the x-ray beam. Our model allows for computing weight fractions of the individual materials that make up the object, which can then be used to reconstruct pseudo-3D images. The reconstruction process requires solving a large-scale inverse problem, which is done with a gradient descent iteration. Regularization is enforced by truncating the iteration. The mathematical model is described in detail, as is an efficient approach to compute the gradient of the objective function. The effectiveness of our approach is illustrated with real data taken of an object with known materials that simulates an actual breast. [PUBLICATION ABSTRACT]</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/120881440</doi></addata></record>
fulltext fulltext
identifier ISSN: 1064-8275
ispartof SIAM journal on scientific computing, 2013-01, Vol.35 (5), p.S192-S208
issn 1064-8275
1095-7197
language eng
recordid cdi_proquest_miscellaneous_1567077303
source SIAM Journals Online
subjects Algorithms
Applied mathematics
Beams (radiation)
Breast
Computation
Digital
Image reconstruction
Inverse problems
Iterative methods
Mathematical models
Noise
Random variables
Reconstruction
Sensors
Three dimensional imaging
Tomography
title Iterative Breast Tomosynthesis Image Reconstruction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T11%3A51%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Iterative%20Breast%20Tomosynthesis%20Image%20Reconstruction&rft.jtitle=SIAM%20journal%20on%20scientific%20computing&rft.au=Bustamante,%20Veronica%20Mejia&rft.date=2013-01-01&rft.volume=35&rft.issue=5&rft.spage=S192&rft.epage=S208&rft.pages=S192-S208&rft.issn=1064-8275&rft.eissn=1095-7197&rft_id=info:doi/10.1137/120881440&rft_dat=%3Cproquest_cross%3E3110465821%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1445797008&rft_id=info:pmid/&rfr_iscdi=true