Construction and study of high-order accurate schemes for solving the one-dimensional heat equation
The method of undetermined coefficients on multipoint stencils with two time levels was used to construct compact difference schemes of O (τ 3 , h 6 ) accuracy intended for solving boundary value problems for the one-dimensional heat equation. The schemes were examined for von Neumann stability, and...
Gespeichert in:
Veröffentlicht in: | Computational mathematics and mathematical physics 2014-07, Vol.54 (7), p.1110-1121, Article 1110 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1121 |
---|---|
container_issue | 7 |
container_start_page | 1110 |
container_title | Computational mathematics and mathematical physics |
container_volume | 54 |
creator | Komarov, S. Yu Shapeev, V. P. |
description | The method of undetermined coefficients on multipoint stencils with two time levels was used to construct compact difference schemes of
O
(τ
3
,
h
6
) accuracy intended for solving boundary value problems for the one-dimensional heat equation. The schemes were examined for von Neumann stability, and numerical experiments were conducted on a sequence of grids with mesh sizes tending to zero. One of the schemes was proved to be absolutely stable. It was shown that, for smooth solutions, the high order of convergence of the numerical solution agrees with the order of accuracy; moreover, solutions accurate up to ∼10
−12
are obtained on grids with spatial mesh sizes of ∼10
−2
. The formulas for the schemes are rather simple and easy to implement on a computer. |
doi_str_mv | 10.1134/S0965542514070082 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1567073557</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1567073557</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-e59a756a2b9b5a2c51e836e5055e2ead048d88a5050b172a53c5d2ee6d80410e3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwAewssWET8CNjJ0tU8ZIqsQDWketMmlRp3NoOUv-ehLJARbCyRnPO9egScsnZDecyvX1luQJIBfCUacYycUQmHAASpZQ4JpNxnYz7U3IWwooxrvJMToiduS5E39vYuI6arqQh9uWOuorWzbJOnC_RU2Nt701EGmyNawy0cp4G13403ZLGGqnrMCmbNXZhiDEtrdFEitvejLHn5KQybcCL73dK3h_u32ZPyfzl8Xl2N0-sTPOYIORGgzJikS_ACAscM6kQGAAKNCVLszLLzDCzBdfCgLRQCkRVZizlDOWUXO9zN95tewyxWDfBYtuaDl0fCg5KMy0B9IBeHaAr1_vh8pFKNTCZpXKg-J6y3oXgsSo2vlkbvys4K8bai1-1D44-cGwTv2qI3jTtv6bYm2H4pVui_3HTn9IncriVUQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1547503843</pqid></control><display><type>article</type><title>Construction and study of high-order accurate schemes for solving the one-dimensional heat equation</title><source>Springer Nature - Complete Springer Journals</source><creator>Komarov, S. Yu ; Shapeev, V. P.</creator><creatorcontrib>Komarov, S. Yu ; Shapeev, V. P.</creatorcontrib><description>The method of undetermined coefficients on multipoint stencils with two time levels was used to construct compact difference schemes of
O
(τ
3
,
h
6
) accuracy intended for solving boundary value problems for the one-dimensional heat equation. The schemes were examined for von Neumann stability, and numerical experiments were conducted on a sequence of grids with mesh sizes tending to zero. One of the schemes was proved to be absolutely stable. It was shown that, for smooth solutions, the high order of convergence of the numerical solution agrees with the order of accuracy; moreover, solutions accurate up to ∼10
−12
are obtained on grids with spatial mesh sizes of ∼10
−2
. The formulas for the schemes are rather simple and easy to implement on a computer.</description><identifier>ISSN: 0965-5425</identifier><identifier>EISSN: 1555-6662</identifier><identifier>DOI: 10.1134/S0965542514070082</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Accuracy ; Algorithms ; Boundary value problems ; Computational mathematics ; Computational Mathematics and Numerical Analysis ; Computer simulation ; Construction ; Convergence ; Data exchange ; Heat equations ; Linear algebra ; Mathematical analysis ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Methods ; Numerical analysis ; Simulation ; Stencils ; Studies</subject><ispartof>Computational mathematics and mathematical physics, 2014-07, Vol.54 (7), p.1110-1121, Article 1110</ispartof><rights>Pleiades Publishing, Ltd. 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-e59a756a2b9b5a2c51e836e5055e2ead048d88a5050b172a53c5d2ee6d80410e3</citedby><cites>FETCH-LOGICAL-c349t-e59a756a2b9b5a2c51e836e5055e2ead048d88a5050b172a53c5d2ee6d80410e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0965542514070082$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0965542514070082$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Komarov, S. Yu</creatorcontrib><creatorcontrib>Shapeev, V. P.</creatorcontrib><title>Construction and study of high-order accurate schemes for solving the one-dimensional heat equation</title><title>Computational mathematics and mathematical physics</title><addtitle>Comput. Math. and Math. Phys</addtitle><description>The method of undetermined coefficients on multipoint stencils with two time levels was used to construct compact difference schemes of
O
(τ
3
,
h
6
) accuracy intended for solving boundary value problems for the one-dimensional heat equation. The schemes were examined for von Neumann stability, and numerical experiments were conducted on a sequence of grids with mesh sizes tending to zero. One of the schemes was proved to be absolutely stable. It was shown that, for smooth solutions, the high order of convergence of the numerical solution agrees with the order of accuracy; moreover, solutions accurate up to ∼10
−12
are obtained on grids with spatial mesh sizes of ∼10
−2
. The formulas for the schemes are rather simple and easy to implement on a computer.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Boundary value problems</subject><subject>Computational mathematics</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Computer simulation</subject><subject>Construction</subject><subject>Convergence</subject><subject>Data exchange</subject><subject>Heat equations</subject><subject>Linear algebra</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Methods</subject><subject>Numerical analysis</subject><subject>Simulation</subject><subject>Stencils</subject><subject>Studies</subject><issn>0965-5425</issn><issn>1555-6662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kMtOwzAQRS0EEqXwAewssWET8CNjJ0tU8ZIqsQDWketMmlRp3NoOUv-ehLJARbCyRnPO9egScsnZDecyvX1luQJIBfCUacYycUQmHAASpZQ4JpNxnYz7U3IWwooxrvJMToiduS5E39vYuI6arqQh9uWOuorWzbJOnC_RU2Nt701EGmyNawy0cp4G13403ZLGGqnrMCmbNXZhiDEtrdFEitvejLHn5KQybcCL73dK3h_u32ZPyfzl8Xl2N0-sTPOYIORGgzJikS_ACAscM6kQGAAKNCVLszLLzDCzBdfCgLRQCkRVZizlDOWUXO9zN95tewyxWDfBYtuaDl0fCg5KMy0B9IBeHaAr1_vh8pFKNTCZpXKg-J6y3oXgsSo2vlkbvys4K8bai1-1D44-cGwTv2qI3jTtv6bYm2H4pVui_3HTn9IncriVUQ</recordid><startdate>20140701</startdate><enddate>20140701</enddate><creator>Komarov, S. Yu</creator><creator>Shapeev, V. P.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20140701</creationdate><title>Construction and study of high-order accurate schemes for solving the one-dimensional heat equation</title><author>Komarov, S. Yu ; Shapeev, V. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-e59a756a2b9b5a2c51e836e5055e2ead048d88a5050b172a53c5d2ee6d80410e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Boundary value problems</topic><topic>Computational mathematics</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Computer simulation</topic><topic>Construction</topic><topic>Convergence</topic><topic>Data exchange</topic><topic>Heat equations</topic><topic>Linear algebra</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Methods</topic><topic>Numerical analysis</topic><topic>Simulation</topic><topic>Stencils</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Komarov, S. Yu</creatorcontrib><creatorcontrib>Shapeev, V. P.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Computational mathematics and mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Komarov, S. Yu</au><au>Shapeev, V. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Construction and study of high-order accurate schemes for solving the one-dimensional heat equation</atitle><jtitle>Computational mathematics and mathematical physics</jtitle><stitle>Comput. Math. and Math. Phys</stitle><date>2014-07-01</date><risdate>2014</risdate><volume>54</volume><issue>7</issue><spage>1110</spage><epage>1121</epage><pages>1110-1121</pages><artnum>1110</artnum><issn>0965-5425</issn><eissn>1555-6662</eissn><abstract>The method of undetermined coefficients on multipoint stencils with two time levels was used to construct compact difference schemes of
O
(τ
3
,
h
6
) accuracy intended for solving boundary value problems for the one-dimensional heat equation. The schemes were examined for von Neumann stability, and numerical experiments were conducted on a sequence of grids with mesh sizes tending to zero. One of the schemes was proved to be absolutely stable. It was shown that, for smooth solutions, the high order of convergence of the numerical solution agrees with the order of accuracy; moreover, solutions accurate up to ∼10
−12
are obtained on grids with spatial mesh sizes of ∼10
−2
. The formulas for the schemes are rather simple and easy to implement on a computer.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0965542514070082</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0965-5425 |
ispartof | Computational mathematics and mathematical physics, 2014-07, Vol.54 (7), p.1110-1121, Article 1110 |
issn | 0965-5425 1555-6662 |
language | eng |
recordid | cdi_proquest_miscellaneous_1567073557 |
source | Springer Nature - Complete Springer Journals |
subjects | Accuracy Algorithms Boundary value problems Computational mathematics Computational Mathematics and Numerical Analysis Computer simulation Construction Convergence Data exchange Heat equations Linear algebra Mathematical analysis Mathematical models Mathematics Mathematics and Statistics Methods Numerical analysis Simulation Stencils Studies |
title | Construction and study of high-order accurate schemes for solving the one-dimensional heat equation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T11%3A29%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Construction%20and%20study%20of%20high-order%20accurate%20schemes%20for%20solving%20the%20one-dimensional%20heat%20equation&rft.jtitle=Computational%20mathematics%20and%20mathematical%20physics&rft.au=Komarov,%20S.%20Yu&rft.date=2014-07-01&rft.volume=54&rft.issue=7&rft.spage=1110&rft.epage=1121&rft.pages=1110-1121&rft.artnum=1110&rft.issn=0965-5425&rft.eissn=1555-6662&rft_id=info:doi/10.1134/S0965542514070082&rft_dat=%3Cproquest_cross%3E1567073557%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1547503843&rft_id=info:pmid/&rfr_iscdi=true |