An efficient crossover architecture for hardware parallel implementation of genetic algorithm

In this article a new architecture for hardware implementation of genetic algorithm in reconfigurable embedded systems is presented. The main idea is based on the efficient use of a genetic algorithm's crossover operator to enhance the speed of algorithm to reach an optimal solution. In this ar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neurocomputing (Amsterdam) 2014-03, Vol.128, p.316-327
Hauptverfasser: Faraji, Rasoul, Naji, Hamid Reza
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 327
container_issue
container_start_page 316
container_title Neurocomputing (Amsterdam)
container_volume 128
creator Faraji, Rasoul
Naji, Hamid Reza
description In this article a new architecture for hardware implementation of genetic algorithm in reconfigurable embedded systems is presented. The main idea is based on the efficient use of a genetic algorithm's crossover operator to enhance the speed of algorithm to reach an optimal solution. In this article a new crossover called DSO and also two new architectures for implementation of crossover operators are introduced to provide suitable solutions for solving the problems related to fitness function of the genetic algorithm. At first, some optimum operators are selected and then utilized in a new parallel architecture to increase the speed and accuracy of algorithm convergence. Finally, based on reusability of existing resources, the main idea of the article is introduced to improve the performance of the algorithm and finding the optimal solution. The properties of FPGAs such as flexibility and parallelism help this purpose.
doi_str_mv 10.1016/j.neucom.2013.08.035
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1567073325</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925231213009272</els_id><sourcerecordid>1567073325</sourcerecordid><originalsourceid>FETCH-LOGICAL-c435t-b61739e940bc0fe2dd14aaff787b90a3159a8717b11fbf77b1ad35db7bd1942f3</originalsourceid><addsrcrecordid>eNp9kEFr3DAQhUVJoJuk_6AHXQq92NFI9sq-FEJI0kCgl_ZYxFge7WqRra3kTci_j7YbeuzpMfDePN7H2GcQNQhYX-_qmQ42TrUUoGrR1UK1H9gKOi2rTnbrM7YSvWwrqUB-ZBc574QADbJfsd83MyfnvPU0L9ymmHN8psQx2a1fyC6HRNzFxLeYxhcsxx4ThkCB-2kfaCoxXHyceXR8QzMt3nIMm5j8sp2u2LnDkOnTu16yX_d3P2-_V08_Hh5vb54q26h2qYY1aNVT34jBCkdyHKFBdE53eugFKmh77DToAcANThfFUbXjoIcR-kY6dcm-nv7uU_xzoLyYyWdLIeBM8ZANtGsttFKyLdbmZP27NZEz--QnTK8GhDnSNDtzommONI3oTKFZYl_eGzBbDC7hbH3-l5UFcyO1LL5vJx-Vuc-ekslHtJZGnwpNM0b__6I3Hp6O7Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1567073325</pqid></control><display><type>article</type><title>An efficient crossover architecture for hardware parallel implementation of genetic algorithm</title><source>Elsevier ScienceDirect Journals</source><creator>Faraji, Rasoul ; Naji, Hamid Reza</creator><creatorcontrib>Faraji, Rasoul ; Naji, Hamid Reza</creatorcontrib><description>In this article a new architecture for hardware implementation of genetic algorithm in reconfigurable embedded systems is presented. The main idea is based on the efficient use of a genetic algorithm's crossover operator to enhance the speed of algorithm to reach an optimal solution. In this article a new crossover called DSO and also two new architectures for implementation of crossover operators are introduced to provide suitable solutions for solving the problems related to fitness function of the genetic algorithm. At first, some optimum operators are selected and then utilized in a new parallel architecture to increase the speed and accuracy of algorithm convergence. Finally, based on reusability of existing resources, the main idea of the article is introduced to improve the performance of the algorithm and finding the optimal solution. The properties of FPGAs such as flexibility and parallelism help this purpose.</description><identifier>ISSN: 0925-2312</identifier><identifier>EISSN: 1872-8286</identifier><identifier>DOI: 10.1016/j.neucom.2013.08.035</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Algorithms ; Applied sciences ; Architecture ; Architecture (computers) ; Computer science; control theory; systems ; Crossover operator ; Crossovers ; Exact sciences and technology ; FPGA ; Genetic algorithm ; Genetic algorithms ; Hardware ; Operators ; Optimization ; Theoretical computing</subject><ispartof>Neurocomputing (Amsterdam), 2014-03, Vol.128, p.316-327</ispartof><rights>2013</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c435t-b61739e940bc0fe2dd14aaff787b90a3159a8717b11fbf77b1ad35db7bd1942f3</citedby><cites>FETCH-LOGICAL-c435t-b61739e940bc0fe2dd14aaff787b90a3159a8717b11fbf77b1ad35db7bd1942f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.neucom.2013.08.035$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28284272$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Faraji, Rasoul</creatorcontrib><creatorcontrib>Naji, Hamid Reza</creatorcontrib><title>An efficient crossover architecture for hardware parallel implementation of genetic algorithm</title><title>Neurocomputing (Amsterdam)</title><description>In this article a new architecture for hardware implementation of genetic algorithm in reconfigurable embedded systems is presented. The main idea is based on the efficient use of a genetic algorithm's crossover operator to enhance the speed of algorithm to reach an optimal solution. In this article a new crossover called DSO and also two new architectures for implementation of crossover operators are introduced to provide suitable solutions for solving the problems related to fitness function of the genetic algorithm. At first, some optimum operators are selected and then utilized in a new parallel architecture to increase the speed and accuracy of algorithm convergence. Finally, based on reusability of existing resources, the main idea of the article is introduced to improve the performance of the algorithm and finding the optimal solution. The properties of FPGAs such as flexibility and parallelism help this purpose.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Architecture</subject><subject>Architecture (computers)</subject><subject>Computer science; control theory; systems</subject><subject>Crossover operator</subject><subject>Crossovers</subject><subject>Exact sciences and technology</subject><subject>FPGA</subject><subject>Genetic algorithm</subject><subject>Genetic algorithms</subject><subject>Hardware</subject><subject>Operators</subject><subject>Optimization</subject><subject>Theoretical computing</subject><issn>0925-2312</issn><issn>1872-8286</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kEFr3DAQhUVJoJuk_6AHXQq92NFI9sq-FEJI0kCgl_ZYxFge7WqRra3kTci_j7YbeuzpMfDePN7H2GcQNQhYX-_qmQ42TrUUoGrR1UK1H9gKOi2rTnbrM7YSvWwrqUB-ZBc574QADbJfsd83MyfnvPU0L9ymmHN8psQx2a1fyC6HRNzFxLeYxhcsxx4ThkCB-2kfaCoxXHyceXR8QzMt3nIMm5j8sp2u2LnDkOnTu16yX_d3P2-_V08_Hh5vb54q26h2qYY1aNVT34jBCkdyHKFBdE53eugFKmh77DToAcANThfFUbXjoIcR-kY6dcm-nv7uU_xzoLyYyWdLIeBM8ZANtGsttFKyLdbmZP27NZEz--QnTK8GhDnSNDtzommONI3oTKFZYl_eGzBbDC7hbH3-l5UFcyO1LL5vJx-Vuc-ekslHtJZGnwpNM0b__6I3Hp6O7Q</recordid><startdate>20140327</startdate><enddate>20140327</enddate><creator>Faraji, Rasoul</creator><creator>Naji, Hamid Reza</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140327</creationdate><title>An efficient crossover architecture for hardware parallel implementation of genetic algorithm</title><author>Faraji, Rasoul ; Naji, Hamid Reza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c435t-b61739e940bc0fe2dd14aaff787b90a3159a8717b11fbf77b1ad35db7bd1942f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Architecture</topic><topic>Architecture (computers)</topic><topic>Computer science; control theory; systems</topic><topic>Crossover operator</topic><topic>Crossovers</topic><topic>Exact sciences and technology</topic><topic>FPGA</topic><topic>Genetic algorithm</topic><topic>Genetic algorithms</topic><topic>Hardware</topic><topic>Operators</topic><topic>Optimization</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Faraji, Rasoul</creatorcontrib><creatorcontrib>Naji, Hamid Reza</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Neurocomputing (Amsterdam)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Faraji, Rasoul</au><au>Naji, Hamid Reza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An efficient crossover architecture for hardware parallel implementation of genetic algorithm</atitle><jtitle>Neurocomputing (Amsterdam)</jtitle><date>2014-03-27</date><risdate>2014</risdate><volume>128</volume><spage>316</spage><epage>327</epage><pages>316-327</pages><issn>0925-2312</issn><eissn>1872-8286</eissn><abstract>In this article a new architecture for hardware implementation of genetic algorithm in reconfigurable embedded systems is presented. The main idea is based on the efficient use of a genetic algorithm's crossover operator to enhance the speed of algorithm to reach an optimal solution. In this article a new crossover called DSO and also two new architectures for implementation of crossover operators are introduced to provide suitable solutions for solving the problems related to fitness function of the genetic algorithm. At first, some optimum operators are selected and then utilized in a new parallel architecture to increase the speed and accuracy of algorithm convergence. Finally, based on reusability of existing resources, the main idea of the article is introduced to improve the performance of the algorithm and finding the optimal solution. The properties of FPGAs such as flexibility and parallelism help this purpose.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.neucom.2013.08.035</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0925-2312
ispartof Neurocomputing (Amsterdam), 2014-03, Vol.128, p.316-327
issn 0925-2312
1872-8286
language eng
recordid cdi_proquest_miscellaneous_1567073325
source Elsevier ScienceDirect Journals
subjects Algorithmics. Computability. Computer arithmetics
Algorithms
Applied sciences
Architecture
Architecture (computers)
Computer science
control theory
systems
Crossover operator
Crossovers
Exact sciences and technology
FPGA
Genetic algorithm
Genetic algorithms
Hardware
Operators
Optimization
Theoretical computing
title An efficient crossover architecture for hardware parallel implementation of genetic algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T20%3A29%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20efficient%20crossover%20architecture%20for%20hardware%20parallel%20implementation%20of%20genetic%20algorithm&rft.jtitle=Neurocomputing%20(Amsterdam)&rft.au=Faraji,%20Rasoul&rft.date=2014-03-27&rft.volume=128&rft.spage=316&rft.epage=327&rft.pages=316-327&rft.issn=0925-2312&rft.eissn=1872-8286&rft_id=info:doi/10.1016/j.neucom.2013.08.035&rft_dat=%3Cproquest_cross%3E1567073325%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1567073325&rft_id=info:pmid/&rft_els_id=S0925231213009272&rfr_iscdi=true