An efficient crossover architecture for hardware parallel implementation of genetic algorithm
In this article a new architecture for hardware implementation of genetic algorithm in reconfigurable embedded systems is presented. The main idea is based on the efficient use of a genetic algorithm's crossover operator to enhance the speed of algorithm to reach an optimal solution. In this ar...
Gespeichert in:
Veröffentlicht in: | Neurocomputing (Amsterdam) 2014-03, Vol.128, p.316-327 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 327 |
---|---|
container_issue | |
container_start_page | 316 |
container_title | Neurocomputing (Amsterdam) |
container_volume | 128 |
creator | Faraji, Rasoul Naji, Hamid Reza |
description | In this article a new architecture for hardware implementation of genetic algorithm in reconfigurable embedded systems is presented. The main idea is based on the efficient use of a genetic algorithm's crossover operator to enhance the speed of algorithm to reach an optimal solution. In this article a new crossover called DSO and also two new architectures for implementation of crossover operators are introduced to provide suitable solutions for solving the problems related to fitness function of the genetic algorithm. At first, some optimum operators are selected and then utilized in a new parallel architecture to increase the speed and accuracy of algorithm convergence. Finally, based on reusability of existing resources, the main idea of the article is introduced to improve the performance of the algorithm and finding the optimal solution. The properties of FPGAs such as flexibility and parallelism help this purpose. |
doi_str_mv | 10.1016/j.neucom.2013.08.035 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1567073325</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925231213009272</els_id><sourcerecordid>1567073325</sourcerecordid><originalsourceid>FETCH-LOGICAL-c435t-b61739e940bc0fe2dd14aaff787b90a3159a8717b11fbf77b1ad35db7bd1942f3</originalsourceid><addsrcrecordid>eNp9kEFr3DAQhUVJoJuk_6AHXQq92NFI9sq-FEJI0kCgl_ZYxFge7WqRra3kTci_j7YbeuzpMfDePN7H2GcQNQhYX-_qmQ42TrUUoGrR1UK1H9gKOi2rTnbrM7YSvWwrqUB-ZBc574QADbJfsd83MyfnvPU0L9ymmHN8psQx2a1fyC6HRNzFxLeYxhcsxx4ThkCB-2kfaCoxXHyceXR8QzMt3nIMm5j8sp2u2LnDkOnTu16yX_d3P2-_V08_Hh5vb54q26h2qYY1aNVT34jBCkdyHKFBdE53eugFKmh77DToAcANThfFUbXjoIcR-kY6dcm-nv7uU_xzoLyYyWdLIeBM8ZANtGsttFKyLdbmZP27NZEz--QnTK8GhDnSNDtzommONI3oTKFZYl_eGzBbDC7hbH3-l5UFcyO1LL5vJx-Vuc-ekslHtJZGnwpNM0b__6I3Hp6O7Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1567073325</pqid></control><display><type>article</type><title>An efficient crossover architecture for hardware parallel implementation of genetic algorithm</title><source>Elsevier ScienceDirect Journals</source><creator>Faraji, Rasoul ; Naji, Hamid Reza</creator><creatorcontrib>Faraji, Rasoul ; Naji, Hamid Reza</creatorcontrib><description>In this article a new architecture for hardware implementation of genetic algorithm in reconfigurable embedded systems is presented. The main idea is based on the efficient use of a genetic algorithm's crossover operator to enhance the speed of algorithm to reach an optimal solution. In this article a new crossover called DSO and also two new architectures for implementation of crossover operators are introduced to provide suitable solutions for solving the problems related to fitness function of the genetic algorithm. At first, some optimum operators are selected and then utilized in a new parallel architecture to increase the speed and accuracy of algorithm convergence. Finally, based on reusability of existing resources, the main idea of the article is introduced to improve the performance of the algorithm and finding the optimal solution. The properties of FPGAs such as flexibility and parallelism help this purpose.</description><identifier>ISSN: 0925-2312</identifier><identifier>EISSN: 1872-8286</identifier><identifier>DOI: 10.1016/j.neucom.2013.08.035</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Algorithms ; Applied sciences ; Architecture ; Architecture (computers) ; Computer science; control theory; systems ; Crossover operator ; Crossovers ; Exact sciences and technology ; FPGA ; Genetic algorithm ; Genetic algorithms ; Hardware ; Operators ; Optimization ; Theoretical computing</subject><ispartof>Neurocomputing (Amsterdam), 2014-03, Vol.128, p.316-327</ispartof><rights>2013</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c435t-b61739e940bc0fe2dd14aaff787b90a3159a8717b11fbf77b1ad35db7bd1942f3</citedby><cites>FETCH-LOGICAL-c435t-b61739e940bc0fe2dd14aaff787b90a3159a8717b11fbf77b1ad35db7bd1942f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.neucom.2013.08.035$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28284272$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Faraji, Rasoul</creatorcontrib><creatorcontrib>Naji, Hamid Reza</creatorcontrib><title>An efficient crossover architecture for hardware parallel implementation of genetic algorithm</title><title>Neurocomputing (Amsterdam)</title><description>In this article a new architecture for hardware implementation of genetic algorithm in reconfigurable embedded systems is presented. The main idea is based on the efficient use of a genetic algorithm's crossover operator to enhance the speed of algorithm to reach an optimal solution. In this article a new crossover called DSO and also two new architectures for implementation of crossover operators are introduced to provide suitable solutions for solving the problems related to fitness function of the genetic algorithm. At first, some optimum operators are selected and then utilized in a new parallel architecture to increase the speed and accuracy of algorithm convergence. Finally, based on reusability of existing resources, the main idea of the article is introduced to improve the performance of the algorithm and finding the optimal solution. The properties of FPGAs such as flexibility and parallelism help this purpose.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Architecture</subject><subject>Architecture (computers)</subject><subject>Computer science; control theory; systems</subject><subject>Crossover operator</subject><subject>Crossovers</subject><subject>Exact sciences and technology</subject><subject>FPGA</subject><subject>Genetic algorithm</subject><subject>Genetic algorithms</subject><subject>Hardware</subject><subject>Operators</subject><subject>Optimization</subject><subject>Theoretical computing</subject><issn>0925-2312</issn><issn>1872-8286</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kEFr3DAQhUVJoJuk_6AHXQq92NFI9sq-FEJI0kCgl_ZYxFge7WqRra3kTci_j7YbeuzpMfDePN7H2GcQNQhYX-_qmQ42TrUUoGrR1UK1H9gKOi2rTnbrM7YSvWwrqUB-ZBc574QADbJfsd83MyfnvPU0L9ymmHN8psQx2a1fyC6HRNzFxLeYxhcsxx4ThkCB-2kfaCoxXHyceXR8QzMt3nIMm5j8sp2u2LnDkOnTu16yX_d3P2-_V08_Hh5vb54q26h2qYY1aNVT34jBCkdyHKFBdE53eugFKmh77DToAcANThfFUbXjoIcR-kY6dcm-nv7uU_xzoLyYyWdLIeBM8ZANtGsttFKyLdbmZP27NZEz--QnTK8GhDnSNDtzommONI3oTKFZYl_eGzBbDC7hbH3-l5UFcyO1LL5vJx-Vuc-ekslHtJZGnwpNM0b__6I3Hp6O7Q</recordid><startdate>20140327</startdate><enddate>20140327</enddate><creator>Faraji, Rasoul</creator><creator>Naji, Hamid Reza</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140327</creationdate><title>An efficient crossover architecture for hardware parallel implementation of genetic algorithm</title><author>Faraji, Rasoul ; Naji, Hamid Reza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c435t-b61739e940bc0fe2dd14aaff787b90a3159a8717b11fbf77b1ad35db7bd1942f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Architecture</topic><topic>Architecture (computers)</topic><topic>Computer science; control theory; systems</topic><topic>Crossover operator</topic><topic>Crossovers</topic><topic>Exact sciences and technology</topic><topic>FPGA</topic><topic>Genetic algorithm</topic><topic>Genetic algorithms</topic><topic>Hardware</topic><topic>Operators</topic><topic>Optimization</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Faraji, Rasoul</creatorcontrib><creatorcontrib>Naji, Hamid Reza</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Neurocomputing (Amsterdam)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Faraji, Rasoul</au><au>Naji, Hamid Reza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An efficient crossover architecture for hardware parallel implementation of genetic algorithm</atitle><jtitle>Neurocomputing (Amsterdam)</jtitle><date>2014-03-27</date><risdate>2014</risdate><volume>128</volume><spage>316</spage><epage>327</epage><pages>316-327</pages><issn>0925-2312</issn><eissn>1872-8286</eissn><abstract>In this article a new architecture for hardware implementation of genetic algorithm in reconfigurable embedded systems is presented. The main idea is based on the efficient use of a genetic algorithm's crossover operator to enhance the speed of algorithm to reach an optimal solution. In this article a new crossover called DSO and also two new architectures for implementation of crossover operators are introduced to provide suitable solutions for solving the problems related to fitness function of the genetic algorithm. At first, some optimum operators are selected and then utilized in a new parallel architecture to increase the speed and accuracy of algorithm convergence. Finally, based on reusability of existing resources, the main idea of the article is introduced to improve the performance of the algorithm and finding the optimal solution. The properties of FPGAs such as flexibility and parallelism help this purpose.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.neucom.2013.08.035</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-2312 |
ispartof | Neurocomputing (Amsterdam), 2014-03, Vol.128, p.316-327 |
issn | 0925-2312 1872-8286 |
language | eng |
recordid | cdi_proquest_miscellaneous_1567073325 |
source | Elsevier ScienceDirect Journals |
subjects | Algorithmics. Computability. Computer arithmetics Algorithms Applied sciences Architecture Architecture (computers) Computer science control theory systems Crossover operator Crossovers Exact sciences and technology FPGA Genetic algorithm Genetic algorithms Hardware Operators Optimization Theoretical computing |
title | An efficient crossover architecture for hardware parallel implementation of genetic algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T20%3A29%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20efficient%20crossover%20architecture%20for%20hardware%20parallel%20implementation%20of%20genetic%20algorithm&rft.jtitle=Neurocomputing%20(Amsterdam)&rft.au=Faraji,%20Rasoul&rft.date=2014-03-27&rft.volume=128&rft.spage=316&rft.epage=327&rft.pages=316-327&rft.issn=0925-2312&rft.eissn=1872-8286&rft_id=info:doi/10.1016/j.neucom.2013.08.035&rft_dat=%3Cproquest_cross%3E1567073325%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1567073325&rft_id=info:pmid/&rft_els_id=S0925231213009272&rfr_iscdi=true |