Electrical Properties of Partial Carbonized Nanoporous Resin Based on Resorcinol-Formaldehyde

Organic xerogel compounds were prepared by sol-gel method from resorcinol-formaldehyde mixtures in acetone using picric acid as catalyst. The electrical properties of the obtained nanoporous carbon structures were explored by changing the pyrolysis temperature. In this study, the electrical conducti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors & transducers 2014-05, Vol.27 (5), p.285-285
Hauptverfasser: Najeh, Imededdine, Mansour, Nabil Ben, Dahman, Hassan, Alyamani, Ahmed, El Mir, Lassaad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 285
container_issue 5
container_start_page 285
container_title Sensors & transducers
container_volume 27
creator Najeh, Imededdine
Mansour, Nabil Ben
Dahman, Hassan
Alyamani, Ahmed
El Mir, Lassaad
description Organic xerogel compounds were prepared by sol-gel method from resorcinol-formaldehyde mixtures in acetone using picric acid as catalyst. The electrical properties of the obtained nanoporous carbon structures were explored by changing the pyrolysis temperature. In this study, the electrical conductivity σ can be expressed as σ=σ^sub 0^exp(-E^sub σ^/kT), where E^sub σ^ depends on the carbonized temperature. The dc and ac conductivities of the obtained amorphous carbon have been investigated from 80 degrees Celsius to 300 degrees Celsius and in the frequency range between 40 Hz and 10^subp 6^ Hz for samples pyrolysed at different temperatures in the insulator-metal transition range. The temperature dependence of samples pyrolysed at low temperatures (T^sub p^=600 degrees Celsius-675 degrees Celsius) follows a Mott law, whereas samples pyrolysed at high temperature (Tp=1,000 degrees Celsius) show an Arrhenius dependence.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1567068514</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3364657801</sourcerecordid><originalsourceid>FETCH-LOGICAL-p614-48e9b705dfe5a7368de83c24e308f40ee68302e5312474d92404295905c6812d3</originalsourceid><addsrcrecordid>eNpdkE9LAzEUxIMoWGq_w4IXLwsv_5OjllaFokV6lZJu3uKWNFmT9qCf3og9eZo3w4_HMBdkQjVTrRTaXpIJ46BaI6m8JrNS9gBAQWvLYELeFwG7Yx46F5p1TiPm44ClSX2zdvWs6dzlXYrDN_rmxcU0ppxOpXnDMsTmwZUap_hrU-6GmEK7TPnggsePL4835Kp3oeDsrFOyWS4286d29fr4PL9ftaOiohUG7U6D9D1Kp7kyHg3vmEAOpheAqAwHhpJTJrTwlgkQzEoLslOGMs-n5O7v7ZjT5wnLcXsYSochuIi17JZKpUHVAURFb_-h-3TKsZarlOCcW6E4_wH5_F3t</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1543339463</pqid></control><display><type>article</type><title>Electrical Properties of Partial Carbonized Nanoporous Resin Based on Resorcinol-Formaldehyde</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Najeh, Imededdine ; Mansour, Nabil Ben ; Dahman, Hassan ; Alyamani, Ahmed ; El Mir, Lassaad</creator><creatorcontrib>Najeh, Imededdine ; Mansour, Nabil Ben ; Dahman, Hassan ; Alyamani, Ahmed ; El Mir, Lassaad</creatorcontrib><description>Organic xerogel compounds were prepared by sol-gel method from resorcinol-formaldehyde mixtures in acetone using picric acid as catalyst. The electrical properties of the obtained nanoporous carbon structures were explored by changing the pyrolysis temperature. In this study, the electrical conductivity σ can be expressed as σ=σ^sub 0^exp(-E^sub σ^/kT), where E^sub σ^ depends on the carbonized temperature. The dc and ac conductivities of the obtained amorphous carbon have been investigated from 80 degrees Celsius to 300 degrees Celsius and in the frequency range between 40 Hz and 10^subp 6^ Hz for samples pyrolysed at different temperatures in the insulator-metal transition range. The temperature dependence of samples pyrolysed at low temperatures (T^sub p^=600 degrees Celsius-675 degrees Celsius) follows a Mott law, whereas samples pyrolysed at high temperature (Tp=1,000 degrees Celsius) show an Arrhenius dependence.</description><identifier>ISSN: 2306-8515</identifier><identifier>EISSN: 1726-5479</identifier><language>eng</language><publisher>Toronto: IFSA Publishing, S.L</publisher><subject>Carbon ; Conductivity ; Direct current ; Electrical properties ; Heat ; Nanostructure ; Nitrogen ; Phase transitions ; Resistivity ; Sol gel process ; Temperature ; Temperature dependence ; Transducers</subject><ispartof>Sensors &amp; transducers, 2014-05, Vol.27 (5), p.285-285</ispartof><rights>Copyright IFSA Publishing, S.L. May 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids></links><search><creatorcontrib>Najeh, Imededdine</creatorcontrib><creatorcontrib>Mansour, Nabil Ben</creatorcontrib><creatorcontrib>Dahman, Hassan</creatorcontrib><creatorcontrib>Alyamani, Ahmed</creatorcontrib><creatorcontrib>El Mir, Lassaad</creatorcontrib><title>Electrical Properties of Partial Carbonized Nanoporous Resin Based on Resorcinol-Formaldehyde</title><title>Sensors &amp; transducers</title><description>Organic xerogel compounds were prepared by sol-gel method from resorcinol-formaldehyde mixtures in acetone using picric acid as catalyst. The electrical properties of the obtained nanoporous carbon structures were explored by changing the pyrolysis temperature. In this study, the electrical conductivity σ can be expressed as σ=σ^sub 0^exp(-E^sub σ^/kT), where E^sub σ^ depends on the carbonized temperature. The dc and ac conductivities of the obtained amorphous carbon have been investigated from 80 degrees Celsius to 300 degrees Celsius and in the frequency range between 40 Hz and 10^subp 6^ Hz for samples pyrolysed at different temperatures in the insulator-metal transition range. The temperature dependence of samples pyrolysed at low temperatures (T^sub p^=600 degrees Celsius-675 degrees Celsius) follows a Mott law, whereas samples pyrolysed at high temperature (Tp=1,000 degrees Celsius) show an Arrhenius dependence.</description><subject>Carbon</subject><subject>Conductivity</subject><subject>Direct current</subject><subject>Electrical properties</subject><subject>Heat</subject><subject>Nanostructure</subject><subject>Nitrogen</subject><subject>Phase transitions</subject><subject>Resistivity</subject><subject>Sol gel process</subject><subject>Temperature</subject><subject>Temperature dependence</subject><subject>Transducers</subject><issn>2306-8515</issn><issn>1726-5479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpdkE9LAzEUxIMoWGq_w4IXLwsv_5OjllaFokV6lZJu3uKWNFmT9qCf3og9eZo3w4_HMBdkQjVTrRTaXpIJ46BaI6m8JrNS9gBAQWvLYELeFwG7Yx46F5p1TiPm44ClSX2zdvWs6dzlXYrDN_rmxcU0ppxOpXnDMsTmwZUap_hrU-6GmEK7TPnggsePL4835Kp3oeDsrFOyWS4286d29fr4PL9ftaOiohUG7U6D9D1Kp7kyHg3vmEAOpheAqAwHhpJTJrTwlgkQzEoLslOGMs-n5O7v7ZjT5wnLcXsYSochuIi17JZKpUHVAURFb_-h-3TKsZarlOCcW6E4_wH5_F3t</recordid><startdate>20140501</startdate><enddate>20140501</enddate><creator>Najeh, Imededdine</creator><creator>Mansour, Nabil Ben</creator><creator>Dahman, Hassan</creator><creator>Alyamani, Ahmed</creator><creator>El Mir, Lassaad</creator><general>IFSA Publishing, S.L</general><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SP</scope><scope>7XB</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CLZPN</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>M0N</scope><scope>M2P</scope><scope>M2T</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20140501</creationdate><title>Electrical Properties of Partial Carbonized Nanoporous Resin Based on Resorcinol-Formaldehyde</title><author>Najeh, Imededdine ; Mansour, Nabil Ben ; Dahman, Hassan ; Alyamani, Ahmed ; El Mir, Lassaad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p614-48e9b705dfe5a7368de83c24e308f40ee68302e5312474d92404295905c6812d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Carbon</topic><topic>Conductivity</topic><topic>Direct current</topic><topic>Electrical properties</topic><topic>Heat</topic><topic>Nanostructure</topic><topic>Nitrogen</topic><topic>Phase transitions</topic><topic>Resistivity</topic><topic>Sol gel process</topic><topic>Temperature</topic><topic>Temperature dependence</topic><topic>Transducers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Najeh, Imededdine</creatorcontrib><creatorcontrib>Mansour, Nabil Ben</creatorcontrib><creatorcontrib>Dahman, Hassan</creatorcontrib><creatorcontrib>Alyamani, Ahmed</creatorcontrib><creatorcontrib>El Mir, Lassaad</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Latin America &amp; Iberia Database</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Sensors &amp; transducers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Najeh, Imededdine</au><au>Mansour, Nabil Ben</au><au>Dahman, Hassan</au><au>Alyamani, Ahmed</au><au>El Mir, Lassaad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrical Properties of Partial Carbonized Nanoporous Resin Based on Resorcinol-Formaldehyde</atitle><jtitle>Sensors &amp; transducers</jtitle><date>2014-05-01</date><risdate>2014</risdate><volume>27</volume><issue>5</issue><spage>285</spage><epage>285</epage><pages>285-285</pages><issn>2306-8515</issn><eissn>1726-5479</eissn><abstract>Organic xerogel compounds were prepared by sol-gel method from resorcinol-formaldehyde mixtures in acetone using picric acid as catalyst. The electrical properties of the obtained nanoporous carbon structures were explored by changing the pyrolysis temperature. In this study, the electrical conductivity σ can be expressed as σ=σ^sub 0^exp(-E^sub σ^/kT), where E^sub σ^ depends on the carbonized temperature. The dc and ac conductivities of the obtained amorphous carbon have been investigated from 80 degrees Celsius to 300 degrees Celsius and in the frequency range between 40 Hz and 10^subp 6^ Hz for samples pyrolysed at different temperatures in the insulator-metal transition range. The temperature dependence of samples pyrolysed at low temperatures (T^sub p^=600 degrees Celsius-675 degrees Celsius) follows a Mott law, whereas samples pyrolysed at high temperature (Tp=1,000 degrees Celsius) show an Arrhenius dependence.</abstract><cop>Toronto</cop><pub>IFSA Publishing, S.L</pub><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2306-8515
ispartof Sensors & transducers, 2014-05, Vol.27 (5), p.285-285
issn 2306-8515
1726-5479
language eng
recordid cdi_proquest_miscellaneous_1567068514
source EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Carbon
Conductivity
Direct current
Electrical properties
Heat
Nanostructure
Nitrogen
Phase transitions
Resistivity
Sol gel process
Temperature
Temperature dependence
Transducers
title Electrical Properties of Partial Carbonized Nanoporous Resin Based on Resorcinol-Formaldehyde
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T22%3A12%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrical%20Properties%20of%20Partial%20Carbonized%20Nanoporous%20Resin%20Based%20on%20Resorcinol-Formaldehyde&rft.jtitle=Sensors%20&%20transducers&rft.au=Najeh,%20Imededdine&rft.date=2014-05-01&rft.volume=27&rft.issue=5&rft.spage=285&rft.epage=285&rft.pages=285-285&rft.issn=2306-8515&rft.eissn=1726-5479&rft_id=info:doi/&rft_dat=%3Cproquest%3E3364657801%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1543339463&rft_id=info:pmid/&rfr_iscdi=true