TDOA-based adaptive sensing in multi-agent cooperative target tracking

This paper investigates the adaptive sensing for cooperative target tracking in three-dimensional environments by multiple autonomous vehicles based on measurements from time-difference-of-arrival (TDOA) sensors. An iterated filtering algorithm combined with the Gauss–Newton method is applied to est...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Signal processing 2014-05, Vol.98, p.186-196
Hauptverfasser: Hu, Jinwen, Xie, Lihua, Xu, Jun, Xu, Zhao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 196
container_issue
container_start_page 186
container_title Signal processing
container_volume 98
creator Hu, Jinwen
Xie, Lihua
Xu, Jun
Xu, Zhao
description This paper investigates the adaptive sensing for cooperative target tracking in three-dimensional environments by multiple autonomous vehicles based on measurements from time-difference-of-arrival (TDOA) sensors. An iterated filtering algorithm combined with the Gauss–Newton method is applied to estimate the target location. By minimizing the determinant of the estimation error covariance matrix, an adaptive sensing strategy is developed. A gradient-based control law for each agent is proposed and a set of stationary points for local optimum geometric configurations of the agents is given. The proposed sensing strategy is further compared with other sensing strategies using different optimization criteria such as the Cramer–Rao lower bound. Potential modifications of the proposed sensing strategy is also discussed such as to include the formation control of agents. Finally, the proposed sensing strategy is demonstrated and compared with other sensing strategies by simulation, which shows that our method can provide good performance with even only two agents, i.e., one measurement at each time. •The mobile agents can adaptively seek local optimal sensing positions to track the mobile target.•We analyze the tracking performance using different control optimization criteria and different filtering algorithms.•Our method can provide good performance with two agents, i.e., only one TDOA measurement at each time.
doi_str_mv 10.1016/j.sigpro.2013.11.030
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1567066095</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0165168413004660</els_id><sourcerecordid>1567066095</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-8628228652400172276901bbc342b78951718caa5effbab2d97c46c1c239da7b3</originalsourceid><addsrcrecordid>eNp9kLtOwzAUhi0EEuXyBgxZkFgSbCexkwWpKhSQKnUps3XinEQuaRJstxJvj0sqRqazfP_5L4TcMZowysTjNnGmHe2QcMrShLGEpvSMzFgheSzzXJ6TWcDymIkiuyRXzm0pDaSgM7LcPK_ncQUO6whqGL05YOSwd6ZvI9NHu33nTQwt9j7SwzCihV_Eg23RR96C_gzoDblooHN4e7rX5GP5slm8xav16_tivop1KkofF4IXnBci51kIIDmXoqSsqnSa8UoWZc4kKzRAjk1TQcXrUupMaKZ5WtYgq_SaPEx_Q9uvPTqvdsZp7Drocdg7xXIhqRC0zAOaTai2g3MWGzVaswP7rRhVx9nUVk2zqeNsijEVZguy-5MDOA1dY6HXxv1peZHyNIQP3NPEYah7MGiV0wZ7jbWxqL2qB_O_0Q_lWIPw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1567066095</pqid></control><display><type>article</type><title>TDOA-based adaptive sensing in multi-agent cooperative target tracking</title><source>Elsevier ScienceDirect Journals</source><creator>Hu, Jinwen ; Xie, Lihua ; Xu, Jun ; Xu, Zhao</creator><creatorcontrib>Hu, Jinwen ; Xie, Lihua ; Xu, Jun ; Xu, Zhao</creatorcontrib><description>This paper investigates the adaptive sensing for cooperative target tracking in three-dimensional environments by multiple autonomous vehicles based on measurements from time-difference-of-arrival (TDOA) sensors. An iterated filtering algorithm combined with the Gauss–Newton method is applied to estimate the target location. By minimizing the determinant of the estimation error covariance matrix, an adaptive sensing strategy is developed. A gradient-based control law for each agent is proposed and a set of stationary points for local optimum geometric configurations of the agents is given. The proposed sensing strategy is further compared with other sensing strategies using different optimization criteria such as the Cramer–Rao lower bound. Potential modifications of the proposed sensing strategy is also discussed such as to include the formation control of agents. Finally, the proposed sensing strategy is demonstrated and compared with other sensing strategies by simulation, which shows that our method can provide good performance with even only two agents, i.e., one measurement at each time. •The mobile agents can adaptively seek local optimal sensing positions to track the mobile target.•We analyze the tracking performance using different control optimization criteria and different filtering algorithms.•Our method can provide good performance with two agents, i.e., only one TDOA measurement at each time.</description><identifier>ISSN: 0165-1684</identifier><identifier>EISSN: 1872-7557</identifier><identifier>DOI: 10.1016/j.sigpro.2013.11.030</identifier><identifier>CODEN: SPRODR</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Adaptive sensing ; Algorithms ; Applied sciences ; Autonomous ; Detection ; Detection, estimation, filtering, equalization, prediction ; Exact sciences and technology ; Filtering ; Information, signal and communications theory ; Multi-agent system ; Optimization ; Signal and communications theory ; Signal, noise ; Strategy ; Target tracking ; TDOA ; Telecommunications and information theory ; Three dimensional</subject><ispartof>Signal processing, 2014-05, Vol.98, p.186-196</ispartof><rights>2013 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c369t-8628228652400172276901bbc342b78951718caa5effbab2d97c46c1c239da7b3</citedby><cites>FETCH-LOGICAL-c369t-8628228652400172276901bbc342b78951718caa5effbab2d97c46c1c239da7b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0165168413004660$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28323400$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hu, Jinwen</creatorcontrib><creatorcontrib>Xie, Lihua</creatorcontrib><creatorcontrib>Xu, Jun</creatorcontrib><creatorcontrib>Xu, Zhao</creatorcontrib><title>TDOA-based adaptive sensing in multi-agent cooperative target tracking</title><title>Signal processing</title><description>This paper investigates the adaptive sensing for cooperative target tracking in three-dimensional environments by multiple autonomous vehicles based on measurements from time-difference-of-arrival (TDOA) sensors. An iterated filtering algorithm combined with the Gauss–Newton method is applied to estimate the target location. By minimizing the determinant of the estimation error covariance matrix, an adaptive sensing strategy is developed. A gradient-based control law for each agent is proposed and a set of stationary points for local optimum geometric configurations of the agents is given. The proposed sensing strategy is further compared with other sensing strategies using different optimization criteria such as the Cramer–Rao lower bound. Potential modifications of the proposed sensing strategy is also discussed such as to include the formation control of agents. Finally, the proposed sensing strategy is demonstrated and compared with other sensing strategies by simulation, which shows that our method can provide good performance with even only two agents, i.e., one measurement at each time. •The mobile agents can adaptively seek local optimal sensing positions to track the mobile target.•We analyze the tracking performance using different control optimization criteria and different filtering algorithms.•Our method can provide good performance with two agents, i.e., only one TDOA measurement at each time.</description><subject>Adaptive sensing</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Autonomous</subject><subject>Detection</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Exact sciences and technology</subject><subject>Filtering</subject><subject>Information, signal and communications theory</subject><subject>Multi-agent system</subject><subject>Optimization</subject><subject>Signal and communications theory</subject><subject>Signal, noise</subject><subject>Strategy</subject><subject>Target tracking</subject><subject>TDOA</subject><subject>Telecommunications and information theory</subject><subject>Three dimensional</subject><issn>0165-1684</issn><issn>1872-7557</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kLtOwzAUhi0EEuXyBgxZkFgSbCexkwWpKhSQKnUps3XinEQuaRJstxJvj0sqRqazfP_5L4TcMZowysTjNnGmHe2QcMrShLGEpvSMzFgheSzzXJ6TWcDymIkiuyRXzm0pDaSgM7LcPK_ncQUO6whqGL05YOSwd6ZvI9NHu33nTQwt9j7SwzCihV_Eg23RR96C_gzoDblooHN4e7rX5GP5slm8xav16_tivop1KkofF4IXnBci51kIIDmXoqSsqnSa8UoWZc4kKzRAjk1TQcXrUupMaKZ5WtYgq_SaPEx_Q9uvPTqvdsZp7Drocdg7xXIhqRC0zAOaTai2g3MWGzVaswP7rRhVx9nUVk2zqeNsijEVZguy-5MDOA1dY6HXxv1peZHyNIQP3NPEYah7MGiV0wZ7jbWxqL2qB_O_0Q_lWIPw</recordid><startdate>20140501</startdate><enddate>20140501</enddate><creator>Hu, Jinwen</creator><creator>Xie, Lihua</creator><creator>Xu, Jun</creator><creator>Xu, Zhao</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140501</creationdate><title>TDOA-based adaptive sensing in multi-agent cooperative target tracking</title><author>Hu, Jinwen ; Xie, Lihua ; Xu, Jun ; Xu, Zhao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-8628228652400172276901bbc342b78951718caa5effbab2d97c46c1c239da7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Adaptive sensing</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Autonomous</topic><topic>Detection</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Exact sciences and technology</topic><topic>Filtering</topic><topic>Information, signal and communications theory</topic><topic>Multi-agent system</topic><topic>Optimization</topic><topic>Signal and communications theory</topic><topic>Signal, noise</topic><topic>Strategy</topic><topic>Target tracking</topic><topic>TDOA</topic><topic>Telecommunications and information theory</topic><topic>Three dimensional</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Jinwen</creatorcontrib><creatorcontrib>Xie, Lihua</creatorcontrib><creatorcontrib>Xu, Jun</creatorcontrib><creatorcontrib>Xu, Zhao</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Jinwen</au><au>Xie, Lihua</au><au>Xu, Jun</au><au>Xu, Zhao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TDOA-based adaptive sensing in multi-agent cooperative target tracking</atitle><jtitle>Signal processing</jtitle><date>2014-05-01</date><risdate>2014</risdate><volume>98</volume><spage>186</spage><epage>196</epage><pages>186-196</pages><issn>0165-1684</issn><eissn>1872-7557</eissn><coden>SPRODR</coden><abstract>This paper investigates the adaptive sensing for cooperative target tracking in three-dimensional environments by multiple autonomous vehicles based on measurements from time-difference-of-arrival (TDOA) sensors. An iterated filtering algorithm combined with the Gauss–Newton method is applied to estimate the target location. By minimizing the determinant of the estimation error covariance matrix, an adaptive sensing strategy is developed. A gradient-based control law for each agent is proposed and a set of stationary points for local optimum geometric configurations of the agents is given. The proposed sensing strategy is further compared with other sensing strategies using different optimization criteria such as the Cramer–Rao lower bound. Potential modifications of the proposed sensing strategy is also discussed such as to include the formation control of agents. Finally, the proposed sensing strategy is demonstrated and compared with other sensing strategies by simulation, which shows that our method can provide good performance with even only two agents, i.e., one measurement at each time. •The mobile agents can adaptively seek local optimal sensing positions to track the mobile target.•We analyze the tracking performance using different control optimization criteria and different filtering algorithms.•Our method can provide good performance with two agents, i.e., only one TDOA measurement at each time.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.sigpro.2013.11.030</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0165-1684
ispartof Signal processing, 2014-05, Vol.98, p.186-196
issn 0165-1684
1872-7557
language eng
recordid cdi_proquest_miscellaneous_1567066095
source Elsevier ScienceDirect Journals
subjects Adaptive sensing
Algorithms
Applied sciences
Autonomous
Detection
Detection, estimation, filtering, equalization, prediction
Exact sciences and technology
Filtering
Information, signal and communications theory
Multi-agent system
Optimization
Signal and communications theory
Signal, noise
Strategy
Target tracking
TDOA
Telecommunications and information theory
Three dimensional
title TDOA-based adaptive sensing in multi-agent cooperative target tracking
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T07%3A59%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TDOA-based%20adaptive%20sensing%20in%20multi-agent%20cooperative%20target%20tracking&rft.jtitle=Signal%20processing&rft.au=Hu,%20Jinwen&rft.date=2014-05-01&rft.volume=98&rft.spage=186&rft.epage=196&rft.pages=186-196&rft.issn=0165-1684&rft.eissn=1872-7557&rft.coden=SPRODR&rft_id=info:doi/10.1016/j.sigpro.2013.11.030&rft_dat=%3Cproquest_cross%3E1567066095%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1567066095&rft_id=info:pmid/&rft_els_id=S0165168413004660&rfr_iscdi=true