Novel Solid State Nitric Oxide Sensor Using Siloxane-Poly(Oxypropylene) (PPO)
In this paper, a novel solid state Nitric Oxide (NO) sensor made of a spin trap (iron(II)-diethyldithiocarbamate complex, FeDETC) encapsulated in a siloxane-poly(oxypropylene) (PPO) matrix was developed. Nitric oxide (NO), a free radical molecule, has numerous roles in various physiological function...
Gespeichert in:
Veröffentlicht in: | Materials sciences and applications 2013-11, Vol.4 (11), p.683-688 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 688 |
---|---|
container_issue | 11 |
container_start_page | 683 |
container_title | Materials sciences and applications |
container_volume | 4 |
creator | Herculano, Rondinelli D. Brunello, Carlos A. Melo Jr, Jair P. Martins, Mayler Borges, Felipe A. Chiavacci, Leila A. Graeff, Carlos F. O. |
description | In this paper, a novel solid state Nitric Oxide (NO) sensor made of a spin trap (iron(II)-diethyldithiocarbamate complex, FeDETC) encapsulated in a siloxane-poly(oxypropylene) (PPO) matrix was developed. Nitric oxide (NO), a free radical molecule, has numerous roles in various physiological functions, such as the regulation of blood pressure, immune response to bacterial infection, and nervous systems. Siloxane-polyether hybrid materials, for example siloxane-poly(oxypropylene) (PPO), are easy to prepare, transparent and flexible. The combination of all these characteristics in a unique material allows it to be used in several scientific and technological areas, including human health. NO radical is trapped in FeDETC, which allows its detection by electron paramagnetic resonance (EPR). FeDETC was added while PPO was a sol, which was then left in air for gelation. The novel sensor was dived directly into a solution of NO, when the NO-FeDETC complex was formed. Our results show that the novel sensor responds to NO, with similar sensitivity as previously published sensors. PPO sensors present a strong EPR signal and a high stability, keeping its signal for 45 days. We have studied ways to accelerate the NO release from the sensor, in order to study its potential as a drug delivery system. We observed an acceleration in NO release by using a modulated magnetic field of 40 G at 100 kHz; as well as by UV irradiation. Thermal induced NO release was also tested by heating NO-FeDETC PPO up to 50 degree C, with good results. |
doi_str_mv | 10.4236/msa.2013.411085 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1567065650</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1567065650</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1605-89d6e731e4034eea0f62c769656320c86b8c000690b260aabb65e604f1c3e9ba3</originalsourceid><addsrcrecordid>eNo9kM9rwjAUx8PYYOI875qjHqpJ06Ttcch-gbNCJ-wW0vg6MmLjkjrsf7-IY-_yHrwvXz58ELqnZJ6lTCz2Qc1TQtk8o5QU_AqNUspZQmlRXP_f-cctmoTwReJkZfzlI_S2dj9gce2s2eG6Vz3gtem90bg6mR3gGrrgPN4G033i2lh3Uh0kG2eHaXUaDt4dBgsdzPB0s6lmd-imVTbA5G-P0fbp8X35kqyq59flwyrRVBCeFOVOQM4oZIRlAIq0ItW5KAUXLCW6EE2hI6MoSZMKolTTCA6CZC3VDMpGsTGaXnojwPcRQi_3JmiwNsK5Y5CUi5zENk5idHGJau9C8NDKgzd75QdJiTy7k9GdPLuTF3fsF43zYDE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1567065650</pqid></control><display><type>article</type><title>Novel Solid State Nitric Oxide Sensor Using Siloxane-Poly(Oxypropylene) (PPO)</title><source>Free Full-Text Journals in Chemistry</source><source>EZB Electronic Journals Library</source><creator>Herculano, Rondinelli D. ; Brunello, Carlos A. ; Melo Jr, Jair P. ; Martins, Mayler ; Borges, Felipe A. ; Chiavacci, Leila A. ; Graeff, Carlos F. O.</creator><creatorcontrib>Herculano, Rondinelli D. ; Brunello, Carlos A. ; Melo Jr, Jair P. ; Martins, Mayler ; Borges, Felipe A. ; Chiavacci, Leila A. ; Graeff, Carlos F. O.</creatorcontrib><description>In this paper, a novel solid state Nitric Oxide (NO) sensor made of a spin trap (iron(II)-diethyldithiocarbamate complex, FeDETC) encapsulated in a siloxane-poly(oxypropylene) (PPO) matrix was developed. Nitric oxide (NO), a free radical molecule, has numerous roles in various physiological functions, such as the regulation of blood pressure, immune response to bacterial infection, and nervous systems. Siloxane-polyether hybrid materials, for example siloxane-poly(oxypropylene) (PPO), are easy to prepare, transparent and flexible. The combination of all these characteristics in a unique material allows it to be used in several scientific and technological areas, including human health. NO radical is trapped in FeDETC, which allows its detection by electron paramagnetic resonance (EPR). FeDETC was added while PPO was a sol, which was then left in air for gelation. The novel sensor was dived directly into a solution of NO, when the NO-FeDETC complex was formed. Our results show that the novel sensor responds to NO, with similar sensitivity as previously published sensors. PPO sensors present a strong EPR signal and a high stability, keeping its signal for 45 days. We have studied ways to accelerate the NO release from the sensor, in order to study its potential as a drug delivery system. We observed an acceleration in NO release by using a modulated magnetic field of 40 G at 100 kHz; as well as by UV irradiation. Thermal induced NO release was also tested by heating NO-FeDETC PPO up to 50 degree C, with good results.</description><identifier>ISSN: 2153-117X</identifier><identifier>EISSN: 2153-1188</identifier><identifier>DOI: 10.4236/msa.2013.411085</identifier><language>eng</language><subject>Acceleration ; Bacteria ; Drug delivery systems ; Free radicals ; Nitric oxide ; Polyphenylene oxides ; Sensors ; Solid state</subject><ispartof>Materials sciences and applications, 2013-11, Vol.4 (11), p.683-688</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1605-89d6e731e4034eea0f62c769656320c86b8c000690b260aabb65e604f1c3e9ba3</citedby><cites>FETCH-LOGICAL-c1605-89d6e731e4034eea0f62c769656320c86b8c000690b260aabb65e604f1c3e9ba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Herculano, Rondinelli D.</creatorcontrib><creatorcontrib>Brunello, Carlos A.</creatorcontrib><creatorcontrib>Melo Jr, Jair P.</creatorcontrib><creatorcontrib>Martins, Mayler</creatorcontrib><creatorcontrib>Borges, Felipe A.</creatorcontrib><creatorcontrib>Chiavacci, Leila A.</creatorcontrib><creatorcontrib>Graeff, Carlos F. O.</creatorcontrib><title>Novel Solid State Nitric Oxide Sensor Using Siloxane-Poly(Oxypropylene) (PPO)</title><title>Materials sciences and applications</title><description>In this paper, a novel solid state Nitric Oxide (NO) sensor made of a spin trap (iron(II)-diethyldithiocarbamate complex, FeDETC) encapsulated in a siloxane-poly(oxypropylene) (PPO) matrix was developed. Nitric oxide (NO), a free radical molecule, has numerous roles in various physiological functions, such as the regulation of blood pressure, immune response to bacterial infection, and nervous systems. Siloxane-polyether hybrid materials, for example siloxane-poly(oxypropylene) (PPO), are easy to prepare, transparent and flexible. The combination of all these characteristics in a unique material allows it to be used in several scientific and technological areas, including human health. NO radical is trapped in FeDETC, which allows its detection by electron paramagnetic resonance (EPR). FeDETC was added while PPO was a sol, which was then left in air for gelation. The novel sensor was dived directly into a solution of NO, when the NO-FeDETC complex was formed. Our results show that the novel sensor responds to NO, with similar sensitivity as previously published sensors. PPO sensors present a strong EPR signal and a high stability, keeping its signal for 45 days. We have studied ways to accelerate the NO release from the sensor, in order to study its potential as a drug delivery system. We observed an acceleration in NO release by using a modulated magnetic field of 40 G at 100 kHz; as well as by UV irradiation. Thermal induced NO release was also tested by heating NO-FeDETC PPO up to 50 degree C, with good results.</description><subject>Acceleration</subject><subject>Bacteria</subject><subject>Drug delivery systems</subject><subject>Free radicals</subject><subject>Nitric oxide</subject><subject>Polyphenylene oxides</subject><subject>Sensors</subject><subject>Solid state</subject><issn>2153-117X</issn><issn>2153-1188</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNo9kM9rwjAUx8PYYOI875qjHqpJ06Ttcch-gbNCJ-wW0vg6MmLjkjrsf7-IY-_yHrwvXz58ELqnZJ6lTCz2Qc1TQtk8o5QU_AqNUspZQmlRXP_f-cctmoTwReJkZfzlI_S2dj9gce2s2eG6Vz3gtem90bg6mR3gGrrgPN4G033i2lh3Uh0kG2eHaXUaDt4dBgsdzPB0s6lmd-imVTbA5G-P0fbp8X35kqyq59flwyrRVBCeFOVOQM4oZIRlAIq0ItW5KAUXLCW6EE2hI6MoSZMKolTTCA6CZC3VDMpGsTGaXnojwPcRQi_3JmiwNsK5Y5CUi5zENk5idHGJau9C8NDKgzd75QdJiTy7k9GdPLuTF3fsF43zYDE</recordid><startdate>20131101</startdate><enddate>20131101</enddate><creator>Herculano, Rondinelli D.</creator><creator>Brunello, Carlos A.</creator><creator>Melo Jr, Jair P.</creator><creator>Martins, Mayler</creator><creator>Borges, Felipe A.</creator><creator>Chiavacci, Leila A.</creator><creator>Graeff, Carlos F. O.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20131101</creationdate><title>Novel Solid State Nitric Oxide Sensor Using Siloxane-Poly(Oxypropylene) (PPO)</title><author>Herculano, Rondinelli D. ; Brunello, Carlos A. ; Melo Jr, Jair P. ; Martins, Mayler ; Borges, Felipe A. ; Chiavacci, Leila A. ; Graeff, Carlos F. O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1605-89d6e731e4034eea0f62c769656320c86b8c000690b260aabb65e604f1c3e9ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Acceleration</topic><topic>Bacteria</topic><topic>Drug delivery systems</topic><topic>Free radicals</topic><topic>Nitric oxide</topic><topic>Polyphenylene oxides</topic><topic>Sensors</topic><topic>Solid state</topic><toplevel>online_resources</toplevel><creatorcontrib>Herculano, Rondinelli D.</creatorcontrib><creatorcontrib>Brunello, Carlos A.</creatorcontrib><creatorcontrib>Melo Jr, Jair P.</creatorcontrib><creatorcontrib>Martins, Mayler</creatorcontrib><creatorcontrib>Borges, Felipe A.</creatorcontrib><creatorcontrib>Chiavacci, Leila A.</creatorcontrib><creatorcontrib>Graeff, Carlos F. O.</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Materials sciences and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Herculano, Rondinelli D.</au><au>Brunello, Carlos A.</au><au>Melo Jr, Jair P.</au><au>Martins, Mayler</au><au>Borges, Felipe A.</au><au>Chiavacci, Leila A.</au><au>Graeff, Carlos F. O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel Solid State Nitric Oxide Sensor Using Siloxane-Poly(Oxypropylene) (PPO)</atitle><jtitle>Materials sciences and applications</jtitle><date>2013-11-01</date><risdate>2013</risdate><volume>4</volume><issue>11</issue><spage>683</spage><epage>688</epage><pages>683-688</pages><issn>2153-117X</issn><eissn>2153-1188</eissn><abstract>In this paper, a novel solid state Nitric Oxide (NO) sensor made of a spin trap (iron(II)-diethyldithiocarbamate complex, FeDETC) encapsulated in a siloxane-poly(oxypropylene) (PPO) matrix was developed. Nitric oxide (NO), a free radical molecule, has numerous roles in various physiological functions, such as the regulation of blood pressure, immune response to bacterial infection, and nervous systems. Siloxane-polyether hybrid materials, for example siloxane-poly(oxypropylene) (PPO), are easy to prepare, transparent and flexible. The combination of all these characteristics in a unique material allows it to be used in several scientific and technological areas, including human health. NO radical is trapped in FeDETC, which allows its detection by electron paramagnetic resonance (EPR). FeDETC was added while PPO was a sol, which was then left in air for gelation. The novel sensor was dived directly into a solution of NO, when the NO-FeDETC complex was formed. Our results show that the novel sensor responds to NO, with similar sensitivity as previously published sensors. PPO sensors present a strong EPR signal and a high stability, keeping its signal for 45 days. We have studied ways to accelerate the NO release from the sensor, in order to study its potential as a drug delivery system. We observed an acceleration in NO release by using a modulated magnetic field of 40 G at 100 kHz; as well as by UV irradiation. Thermal induced NO release was also tested by heating NO-FeDETC PPO up to 50 degree C, with good results.</abstract><doi>10.4236/msa.2013.411085</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2153-117X |
ispartof | Materials sciences and applications, 2013-11, Vol.4 (11), p.683-688 |
issn | 2153-117X 2153-1188 |
language | eng |
recordid | cdi_proquest_miscellaneous_1567065650 |
source | Free Full-Text Journals in Chemistry; EZB Electronic Journals Library |
subjects | Acceleration Bacteria Drug delivery systems Free radicals Nitric oxide Polyphenylene oxides Sensors Solid state |
title | Novel Solid State Nitric Oxide Sensor Using Siloxane-Poly(Oxypropylene) (PPO) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T21%3A10%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20Solid%20State%20Nitric%20Oxide%20Sensor%20Using%20Siloxane-Poly(Oxypropylene)%20(PPO)&rft.jtitle=Materials%20sciences%20and%20applications&rft.au=Herculano,%20Rondinelli%20D.&rft.date=2013-11-01&rft.volume=4&rft.issue=11&rft.spage=683&rft.epage=688&rft.pages=683-688&rft.issn=2153-117X&rft.eissn=2153-1188&rft_id=info:doi/10.4236/msa.2013.411085&rft_dat=%3Cproquest_cross%3E1567065650%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1567065650&rft_id=info:pmid/&rfr_iscdi=true |