Temperature investigations of mechanosynthesized cementite

Methods of differential thermal analysis and Mössbauer spectroscopy ( 57 Fe) have been used to study the process of the formation of cementite in α-Fe upon the low-temperature mechanosynthesis ( T < 375 K) in the medium of liquid hydrocarbons. It has been established that this process occurs in t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of metals and metallography 2014-06, Vol.115 (6), p.576-585
Hauptverfasser: Barinov, V. A., Kazantsev, V. A., Surikov, V. T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 585
container_issue 6
container_start_page 576
container_title Physics of metals and metallography
container_volume 115
creator Barinov, V. A.
Kazantsev, V. A.
Surikov, V. T.
description Methods of differential thermal analysis and Mössbauer spectroscopy ( 57 Fe) have been used to study the process of the formation of cementite in α-Fe upon the low-temperature mechanosynthesis ( T < 375 K) in the medium of liquid hydrocarbons. It has been established that this process occurs in the absence of austenite and corresponds to a two-stage model suggested previously for describing the mechanism of the decomposition of the quench martensite α″-(Fe)C with the precipitation of the θ phase in the process of aging or tempering. Upon dilatometric studies of the single-phase samples of cementite in the range of 750 ≤ T ≤ 925 K, a significant increase was revealed in the linear elongation Δ l / l 0 and linear thermal expansion coefficient (LTEC). It has been assumed that this increase is not connected with the localization of carbon atoms in the positions C(4 a ) and C(4 b ), but rather is determined by the anomalously high concentration of equilibrium carbon vacancies V C in the unit cell of cementite. The concentration of this type of vacancies can be sufficient for the growth of a graphite component of the carbon layer on the surface of the particles of the mechanosynthesized cementite (θ phase).
doi_str_mv 10.1134/S0031918X14060027
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1567064460</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A374920375</galeid><sourcerecordid>A374920375</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-2a519ccd9e172b9ffb48a4bde87e5134dd17a2c57c72f11b5de63b30c2edfeca3</originalsourceid><addsrcrecordid>eNp1kE9LwzAYh4MoOKcfwFvBi5fOpGmaxtsY_oOBByd4K2n6Zstok5m0wvz0ZtSDKJJDIO_zhN_7Q-iS4BkhNL95wZgSQco3kuMC44wfoQlhjKUFEfgYTQ7j9DA_RWchbDHO87ygE3S7gm4HXvaDh8TYDwi9WcveOBsSp5MO1EZaF_a230Awn9AkCjqwvenhHJ1o2Qa4-L6n6PX-brV4TJfPD0-L-TJVtCz7NJOMCKUaAYRntdC6zkuZ1w2UHFiM3jSEy0wxrnimCalZAwWtKVYZNBqUpFN0Pf678-59iAGrzgQFbSstuCFUhBUcF3EdHNGrX-jWDd7GdJGiggrOYltTNBuptWyhMla73ksVTwOdUc6CNvF9TnkuMkw5iwIZBeVdCB50tfOmk35fEVwd6q_-1B-dbHRCZO0a_I8o_0pf9S-Hbg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1539397511</pqid></control><display><type>article</type><title>Temperature investigations of mechanosynthesized cementite</title><source>SpringerLink Journals - AutoHoldings</source><creator>Barinov, V. A. ; Kazantsev, V. A. ; Surikov, V. T.</creator><creatorcontrib>Barinov, V. A. ; Kazantsev, V. A. ; Surikov, V. T.</creatorcontrib><description>Methods of differential thermal analysis and Mössbauer spectroscopy ( 57 Fe) have been used to study the process of the formation of cementite in α-Fe upon the low-temperature mechanosynthesis ( T &lt; 375 K) in the medium of liquid hydrocarbons. It has been established that this process occurs in the absence of austenite and corresponds to a two-stage model suggested previously for describing the mechanism of the decomposition of the quench martensite α″-(Fe)C with the precipitation of the θ phase in the process of aging or tempering. Upon dilatometric studies of the single-phase samples of cementite in the range of 750 ≤ T ≤ 925 K, a significant increase was revealed in the linear elongation Δ l / l 0 and linear thermal expansion coefficient (LTEC). It has been assumed that this increase is not connected with the localization of carbon atoms in the positions C(4 a ) and C(4 b ), but rather is determined by the anomalously high concentration of equilibrium carbon vacancies V C in the unit cell of cementite. The concentration of this type of vacancies can be sufficient for the growth of a graphite component of the carbon layer on the surface of the particles of the mechanosynthesized cementite (θ phase).</description><identifier>ISSN: 0031-918X</identifier><identifier>EISSN: 1555-6190</identifier><identifier>DOI: 10.1134/S0031918X14060027</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Analysis ; Carbides ; Carbon ; Cementite ; Chemistry and Materials Science ; Diffusion ; Intermetallic compounds ; Investigations ; Iron compounds ; Materials Science ; Mathematical models ; Metallic Materials ; Mossbauer spectroscopy ; Phase Transformations ; Position (location) ; Precipitation (Meteorology) ; Structure ; Thermal expansion ; Thermal properties ; Unit cell ; Vacancies</subject><ispartof>Physics of metals and metallography, 2014-06, Vol.115 (6), p.576-585</ispartof><rights>Pleiades Publishing, Ltd. 2014</rights><rights>COPYRIGHT 2014 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-2a519ccd9e172b9ffb48a4bde87e5134dd17a2c57c72f11b5de63b30c2edfeca3</citedby><cites>FETCH-LOGICAL-c388t-2a519ccd9e172b9ffb48a4bde87e5134dd17a2c57c72f11b5de63b30c2edfeca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0031918X14060027$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0031918X14060027$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Barinov, V. A.</creatorcontrib><creatorcontrib>Kazantsev, V. A.</creatorcontrib><creatorcontrib>Surikov, V. T.</creatorcontrib><title>Temperature investigations of mechanosynthesized cementite</title><title>Physics of metals and metallography</title><addtitle>Phys. Metals Metallogr</addtitle><description>Methods of differential thermal analysis and Mössbauer spectroscopy ( 57 Fe) have been used to study the process of the formation of cementite in α-Fe upon the low-temperature mechanosynthesis ( T &lt; 375 K) in the medium of liquid hydrocarbons. It has been established that this process occurs in the absence of austenite and corresponds to a two-stage model suggested previously for describing the mechanism of the decomposition of the quench martensite α″-(Fe)C with the precipitation of the θ phase in the process of aging or tempering. Upon dilatometric studies of the single-phase samples of cementite in the range of 750 ≤ T ≤ 925 K, a significant increase was revealed in the linear elongation Δ l / l 0 and linear thermal expansion coefficient (LTEC). It has been assumed that this increase is not connected with the localization of carbon atoms in the positions C(4 a ) and C(4 b ), but rather is determined by the anomalously high concentration of equilibrium carbon vacancies V C in the unit cell of cementite. The concentration of this type of vacancies can be sufficient for the growth of a graphite component of the carbon layer on the surface of the particles of the mechanosynthesized cementite (θ phase).</description><subject>Analysis</subject><subject>Carbides</subject><subject>Carbon</subject><subject>Cementite</subject><subject>Chemistry and Materials Science</subject><subject>Diffusion</subject><subject>Intermetallic compounds</subject><subject>Investigations</subject><subject>Iron compounds</subject><subject>Materials Science</subject><subject>Mathematical models</subject><subject>Metallic Materials</subject><subject>Mossbauer spectroscopy</subject><subject>Phase Transformations</subject><subject>Position (location)</subject><subject>Precipitation (Meteorology)</subject><subject>Structure</subject><subject>Thermal expansion</subject><subject>Thermal properties</subject><subject>Unit cell</subject><subject>Vacancies</subject><issn>0031-918X</issn><issn>1555-6190</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kE9LwzAYh4MoOKcfwFvBi5fOpGmaxtsY_oOBByd4K2n6Zstok5m0wvz0ZtSDKJJDIO_zhN_7Q-iS4BkhNL95wZgSQco3kuMC44wfoQlhjKUFEfgYTQ7j9DA_RWchbDHO87ygE3S7gm4HXvaDh8TYDwi9WcveOBsSp5MO1EZaF_a230Awn9AkCjqwvenhHJ1o2Qa4-L6n6PX-brV4TJfPD0-L-TJVtCz7NJOMCKUaAYRntdC6zkuZ1w2UHFiM3jSEy0wxrnimCalZAwWtKVYZNBqUpFN0Pf678-59iAGrzgQFbSstuCFUhBUcF3EdHNGrX-jWDd7GdJGiggrOYltTNBuptWyhMla73ksVTwOdUc6CNvF9TnkuMkw5iwIZBeVdCB50tfOmk35fEVwd6q_-1B-dbHRCZO0a_I8o_0pf9S-Hbg</recordid><startdate>20140601</startdate><enddate>20140601</enddate><creator>Barinov, V. A.</creator><creator>Kazantsev, V. A.</creator><creator>Surikov, V. T.</creator><general>Pleiades Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7SR</scope></search><sort><creationdate>20140601</creationdate><title>Temperature investigations of mechanosynthesized cementite</title><author>Barinov, V. A. ; Kazantsev, V. A. ; Surikov, V. T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-2a519ccd9e172b9ffb48a4bde87e5134dd17a2c57c72f11b5de63b30c2edfeca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Analysis</topic><topic>Carbides</topic><topic>Carbon</topic><topic>Cementite</topic><topic>Chemistry and Materials Science</topic><topic>Diffusion</topic><topic>Intermetallic compounds</topic><topic>Investigations</topic><topic>Iron compounds</topic><topic>Materials Science</topic><topic>Mathematical models</topic><topic>Metallic Materials</topic><topic>Mossbauer spectroscopy</topic><topic>Phase Transformations</topic><topic>Position (location)</topic><topic>Precipitation (Meteorology)</topic><topic>Structure</topic><topic>Thermal expansion</topic><topic>Thermal properties</topic><topic>Unit cell</topic><topic>Vacancies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barinov, V. A.</creatorcontrib><creatorcontrib>Kazantsev, V. A.</creatorcontrib><creatorcontrib>Surikov, V. T.</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineered Materials Abstracts</collection><jtitle>Physics of metals and metallography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barinov, V. A.</au><au>Kazantsev, V. A.</au><au>Surikov, V. T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Temperature investigations of mechanosynthesized cementite</atitle><jtitle>Physics of metals and metallography</jtitle><stitle>Phys. Metals Metallogr</stitle><date>2014-06-01</date><risdate>2014</risdate><volume>115</volume><issue>6</issue><spage>576</spage><epage>585</epage><pages>576-585</pages><issn>0031-918X</issn><eissn>1555-6190</eissn><abstract>Methods of differential thermal analysis and Mössbauer spectroscopy ( 57 Fe) have been used to study the process of the formation of cementite in α-Fe upon the low-temperature mechanosynthesis ( T &lt; 375 K) in the medium of liquid hydrocarbons. It has been established that this process occurs in the absence of austenite and corresponds to a two-stage model suggested previously for describing the mechanism of the decomposition of the quench martensite α″-(Fe)C with the precipitation of the θ phase in the process of aging or tempering. Upon dilatometric studies of the single-phase samples of cementite in the range of 750 ≤ T ≤ 925 K, a significant increase was revealed in the linear elongation Δ l / l 0 and linear thermal expansion coefficient (LTEC). It has been assumed that this increase is not connected with the localization of carbon atoms in the positions C(4 a ) and C(4 b ), but rather is determined by the anomalously high concentration of equilibrium carbon vacancies V C in the unit cell of cementite. The concentration of this type of vacancies can be sufficient for the growth of a graphite component of the carbon layer on the surface of the particles of the mechanosynthesized cementite (θ phase).</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0031918X14060027</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0031-918X
ispartof Physics of metals and metallography, 2014-06, Vol.115 (6), p.576-585
issn 0031-918X
1555-6190
language eng
recordid cdi_proquest_miscellaneous_1567064460
source SpringerLink Journals - AutoHoldings
subjects Analysis
Carbides
Carbon
Cementite
Chemistry and Materials Science
Diffusion
Intermetallic compounds
Investigations
Iron compounds
Materials Science
Mathematical models
Metallic Materials
Mossbauer spectroscopy
Phase Transformations
Position (location)
Precipitation (Meteorology)
Structure
Thermal expansion
Thermal properties
Unit cell
Vacancies
title Temperature investigations of mechanosynthesized cementite
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T22%3A47%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Temperature%20investigations%20of%20mechanosynthesized%20cementite&rft.jtitle=Physics%20of%20metals%20and%20metallography&rft.au=Barinov,%20V.%20A.&rft.date=2014-06-01&rft.volume=115&rft.issue=6&rft.spage=576&rft.epage=585&rft.pages=576-585&rft.issn=0031-918X&rft.eissn=1555-6190&rft_id=info:doi/10.1134/S0031918X14060027&rft_dat=%3Cgale_proqu%3EA374920375%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1539397511&rft_id=info:pmid/&rft_galeid=A374920375&rfr_iscdi=true