Temperature investigations of mechanosynthesized cementite
Methods of differential thermal analysis and Mössbauer spectroscopy ( 57 Fe) have been used to study the process of the formation of cementite in α-Fe upon the low-temperature mechanosynthesis ( T < 375 K) in the medium of liquid hydrocarbons. It has been established that this process occurs in t...
Gespeichert in:
Veröffentlicht in: | Physics of metals and metallography 2014-06, Vol.115 (6), p.576-585 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 585 |
---|---|
container_issue | 6 |
container_start_page | 576 |
container_title | Physics of metals and metallography |
container_volume | 115 |
creator | Barinov, V. A. Kazantsev, V. A. Surikov, V. T. |
description | Methods of differential thermal analysis and Mössbauer spectroscopy (
57
Fe) have been used to study the process of the formation of cementite in α-Fe upon the low-temperature mechanosynthesis (
T
< 375 K) in the medium of liquid hydrocarbons. It has been established that this process occurs in the absence of austenite and corresponds to a two-stage model suggested previously for describing the mechanism of the decomposition of the quench martensite α″-(Fe)C with the precipitation of the θ phase in the process of aging or tempering. Upon dilatometric studies of the single-phase samples of cementite in the range of 750 ≤
T
≤ 925 K, a significant increase was revealed in the linear elongation Δ
l
/
l
0
and linear thermal expansion coefficient (LTEC). It has been assumed that this increase is not connected with the localization of carbon atoms in the positions C(4
a
) and C(4
b
), but rather is determined by the anomalously high concentration of equilibrium carbon vacancies
V
C
in the unit cell of cementite. The concentration of this type of vacancies can be sufficient for the growth of a graphite component of the carbon layer on the surface of the particles of the mechanosynthesized cementite (θ phase). |
doi_str_mv | 10.1134/S0031918X14060027 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1567064460</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A374920375</galeid><sourcerecordid>A374920375</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-2a519ccd9e172b9ffb48a4bde87e5134dd17a2c57c72f11b5de63b30c2edfeca3</originalsourceid><addsrcrecordid>eNp1kE9LwzAYh4MoOKcfwFvBi5fOpGmaxtsY_oOBByd4K2n6Zstok5m0wvz0ZtSDKJJDIO_zhN_7Q-iS4BkhNL95wZgSQco3kuMC44wfoQlhjKUFEfgYTQ7j9DA_RWchbDHO87ygE3S7gm4HXvaDh8TYDwi9WcveOBsSp5MO1EZaF_a230Awn9AkCjqwvenhHJ1o2Qa4-L6n6PX-brV4TJfPD0-L-TJVtCz7NJOMCKUaAYRntdC6zkuZ1w2UHFiM3jSEy0wxrnimCalZAwWtKVYZNBqUpFN0Pf678-59iAGrzgQFbSstuCFUhBUcF3EdHNGrX-jWDd7GdJGiggrOYltTNBuptWyhMla73ksVTwOdUc6CNvF9TnkuMkw5iwIZBeVdCB50tfOmk35fEVwd6q_-1B-dbHRCZO0a_I8o_0pf9S-Hbg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1539397511</pqid></control><display><type>article</type><title>Temperature investigations of mechanosynthesized cementite</title><source>SpringerLink Journals - AutoHoldings</source><creator>Barinov, V. A. ; Kazantsev, V. A. ; Surikov, V. T.</creator><creatorcontrib>Barinov, V. A. ; Kazantsev, V. A. ; Surikov, V. T.</creatorcontrib><description>Methods of differential thermal analysis and Mössbauer spectroscopy (
57
Fe) have been used to study the process of the formation of cementite in α-Fe upon the low-temperature mechanosynthesis (
T
< 375 K) in the medium of liquid hydrocarbons. It has been established that this process occurs in the absence of austenite and corresponds to a two-stage model suggested previously for describing the mechanism of the decomposition of the quench martensite α″-(Fe)C with the precipitation of the θ phase in the process of aging or tempering. Upon dilatometric studies of the single-phase samples of cementite in the range of 750 ≤
T
≤ 925 K, a significant increase was revealed in the linear elongation Δ
l
/
l
0
and linear thermal expansion coefficient (LTEC). It has been assumed that this increase is not connected with the localization of carbon atoms in the positions C(4
a
) and C(4
b
), but rather is determined by the anomalously high concentration of equilibrium carbon vacancies
V
C
in the unit cell of cementite. The concentration of this type of vacancies can be sufficient for the growth of a graphite component of the carbon layer on the surface of the particles of the mechanosynthesized cementite (θ phase).</description><identifier>ISSN: 0031-918X</identifier><identifier>EISSN: 1555-6190</identifier><identifier>DOI: 10.1134/S0031918X14060027</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Analysis ; Carbides ; Carbon ; Cementite ; Chemistry and Materials Science ; Diffusion ; Intermetallic compounds ; Investigations ; Iron compounds ; Materials Science ; Mathematical models ; Metallic Materials ; Mossbauer spectroscopy ; Phase Transformations ; Position (location) ; Precipitation (Meteorology) ; Structure ; Thermal expansion ; Thermal properties ; Unit cell ; Vacancies</subject><ispartof>Physics of metals and metallography, 2014-06, Vol.115 (6), p.576-585</ispartof><rights>Pleiades Publishing, Ltd. 2014</rights><rights>COPYRIGHT 2014 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-2a519ccd9e172b9ffb48a4bde87e5134dd17a2c57c72f11b5de63b30c2edfeca3</citedby><cites>FETCH-LOGICAL-c388t-2a519ccd9e172b9ffb48a4bde87e5134dd17a2c57c72f11b5de63b30c2edfeca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0031918X14060027$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0031918X14060027$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Barinov, V. A.</creatorcontrib><creatorcontrib>Kazantsev, V. A.</creatorcontrib><creatorcontrib>Surikov, V. T.</creatorcontrib><title>Temperature investigations of mechanosynthesized cementite</title><title>Physics of metals and metallography</title><addtitle>Phys. Metals Metallogr</addtitle><description>Methods of differential thermal analysis and Mössbauer spectroscopy (
57
Fe) have been used to study the process of the formation of cementite in α-Fe upon the low-temperature mechanosynthesis (
T
< 375 K) in the medium of liquid hydrocarbons. It has been established that this process occurs in the absence of austenite and corresponds to a two-stage model suggested previously for describing the mechanism of the decomposition of the quench martensite α″-(Fe)C with the precipitation of the θ phase in the process of aging or tempering. Upon dilatometric studies of the single-phase samples of cementite in the range of 750 ≤
T
≤ 925 K, a significant increase was revealed in the linear elongation Δ
l
/
l
0
and linear thermal expansion coefficient (LTEC). It has been assumed that this increase is not connected with the localization of carbon atoms in the positions C(4
a
) and C(4
b
), but rather is determined by the anomalously high concentration of equilibrium carbon vacancies
V
C
in the unit cell of cementite. The concentration of this type of vacancies can be sufficient for the growth of a graphite component of the carbon layer on the surface of the particles of the mechanosynthesized cementite (θ phase).</description><subject>Analysis</subject><subject>Carbides</subject><subject>Carbon</subject><subject>Cementite</subject><subject>Chemistry and Materials Science</subject><subject>Diffusion</subject><subject>Intermetallic compounds</subject><subject>Investigations</subject><subject>Iron compounds</subject><subject>Materials Science</subject><subject>Mathematical models</subject><subject>Metallic Materials</subject><subject>Mossbauer spectroscopy</subject><subject>Phase Transformations</subject><subject>Position (location)</subject><subject>Precipitation (Meteorology)</subject><subject>Structure</subject><subject>Thermal expansion</subject><subject>Thermal properties</subject><subject>Unit cell</subject><subject>Vacancies</subject><issn>0031-918X</issn><issn>1555-6190</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kE9LwzAYh4MoOKcfwFvBi5fOpGmaxtsY_oOBByd4K2n6Zstok5m0wvz0ZtSDKJJDIO_zhN_7Q-iS4BkhNL95wZgSQco3kuMC44wfoQlhjKUFEfgYTQ7j9DA_RWchbDHO87ygE3S7gm4HXvaDh8TYDwi9WcveOBsSp5MO1EZaF_a230Awn9AkCjqwvenhHJ1o2Qa4-L6n6PX-brV4TJfPD0-L-TJVtCz7NJOMCKUaAYRntdC6zkuZ1w2UHFiM3jSEy0wxrnimCalZAwWtKVYZNBqUpFN0Pf678-59iAGrzgQFbSstuCFUhBUcF3EdHNGrX-jWDd7GdJGiggrOYltTNBuptWyhMla73ksVTwOdUc6CNvF9TnkuMkw5iwIZBeVdCB50tfOmk35fEVwd6q_-1B-dbHRCZO0a_I8o_0pf9S-Hbg</recordid><startdate>20140601</startdate><enddate>20140601</enddate><creator>Barinov, V. A.</creator><creator>Kazantsev, V. A.</creator><creator>Surikov, V. T.</creator><general>Pleiades Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7SR</scope></search><sort><creationdate>20140601</creationdate><title>Temperature investigations of mechanosynthesized cementite</title><author>Barinov, V. A. ; Kazantsev, V. A. ; Surikov, V. T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-2a519ccd9e172b9ffb48a4bde87e5134dd17a2c57c72f11b5de63b30c2edfeca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Analysis</topic><topic>Carbides</topic><topic>Carbon</topic><topic>Cementite</topic><topic>Chemistry and Materials Science</topic><topic>Diffusion</topic><topic>Intermetallic compounds</topic><topic>Investigations</topic><topic>Iron compounds</topic><topic>Materials Science</topic><topic>Mathematical models</topic><topic>Metallic Materials</topic><topic>Mossbauer spectroscopy</topic><topic>Phase Transformations</topic><topic>Position (location)</topic><topic>Precipitation (Meteorology)</topic><topic>Structure</topic><topic>Thermal expansion</topic><topic>Thermal properties</topic><topic>Unit cell</topic><topic>Vacancies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barinov, V. A.</creatorcontrib><creatorcontrib>Kazantsev, V. A.</creatorcontrib><creatorcontrib>Surikov, V. T.</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineered Materials Abstracts</collection><jtitle>Physics of metals and metallography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barinov, V. A.</au><au>Kazantsev, V. A.</au><au>Surikov, V. T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Temperature investigations of mechanosynthesized cementite</atitle><jtitle>Physics of metals and metallography</jtitle><stitle>Phys. Metals Metallogr</stitle><date>2014-06-01</date><risdate>2014</risdate><volume>115</volume><issue>6</issue><spage>576</spage><epage>585</epage><pages>576-585</pages><issn>0031-918X</issn><eissn>1555-6190</eissn><abstract>Methods of differential thermal analysis and Mössbauer spectroscopy (
57
Fe) have been used to study the process of the formation of cementite in α-Fe upon the low-temperature mechanosynthesis (
T
< 375 K) in the medium of liquid hydrocarbons. It has been established that this process occurs in the absence of austenite and corresponds to a two-stage model suggested previously for describing the mechanism of the decomposition of the quench martensite α″-(Fe)C with the precipitation of the θ phase in the process of aging or tempering. Upon dilatometric studies of the single-phase samples of cementite in the range of 750 ≤
T
≤ 925 K, a significant increase was revealed in the linear elongation Δ
l
/
l
0
and linear thermal expansion coefficient (LTEC). It has been assumed that this increase is not connected with the localization of carbon atoms in the positions C(4
a
) and C(4
b
), but rather is determined by the anomalously high concentration of equilibrium carbon vacancies
V
C
in the unit cell of cementite. The concentration of this type of vacancies can be sufficient for the growth of a graphite component of the carbon layer on the surface of the particles of the mechanosynthesized cementite (θ phase).</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0031918X14060027</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-918X |
ispartof | Physics of metals and metallography, 2014-06, Vol.115 (6), p.576-585 |
issn | 0031-918X 1555-6190 |
language | eng |
recordid | cdi_proquest_miscellaneous_1567064460 |
source | SpringerLink Journals - AutoHoldings |
subjects | Analysis Carbides Carbon Cementite Chemistry and Materials Science Diffusion Intermetallic compounds Investigations Iron compounds Materials Science Mathematical models Metallic Materials Mossbauer spectroscopy Phase Transformations Position (location) Precipitation (Meteorology) Structure Thermal expansion Thermal properties Unit cell Vacancies |
title | Temperature investigations of mechanosynthesized cementite |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T22%3A47%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Temperature%20investigations%20of%20mechanosynthesized%20cementite&rft.jtitle=Physics%20of%20metals%20and%20metallography&rft.au=Barinov,%20V.%20A.&rft.date=2014-06-01&rft.volume=115&rft.issue=6&rft.spage=576&rft.epage=585&rft.pages=576-585&rft.issn=0031-918X&rft.eissn=1555-6190&rft_id=info:doi/10.1134/S0031918X14060027&rft_dat=%3Cgale_proqu%3EA374920375%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1539397511&rft_id=info:pmid/&rft_galeid=A374920375&rfr_iscdi=true |