Group classification and exact solutions of variable-coefficient generalized Burgers equations with linear damping

Admissible point transformations between Burgers equations with linear damping and time-dependent coefficients are described and used in order to exhaustively classify Lie symmetries of these equations. Optimal systems of one- and two-dimensional subalgebras of the Lie invariance algebras obtained a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics and computation 2014-09, Vol.243, p.232-244
Hauptverfasser: Pocheketa, Oleksandr A., Popovych, Roman O., Vaneeva, Olena O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Admissible point transformations between Burgers equations with linear damping and time-dependent coefficients are described and used in order to exhaustively classify Lie symmetries of these equations. Optimal systems of one- and two-dimensional subalgebras of the Lie invariance algebras obtained are constructed. The corresponding Lie reductions to ODEs and to algebraic equations are carried out. Exact solutions to particular equations are found. Some generalized Burgers equations are linearized to the heat equation by composing equivalence transformations with the Hopf–Cole transformation.
ISSN:0096-3003
1873-5649
DOI:10.1016/j.amc.2014.05.099