Dynamic Electromyographic Models to Assess Elbow Joint Torque
Many studies have investigated the relationship between surface EMG and joint torque. Most studies have used EMG amplitude to assess elbow joint torque with dynamic models. In this paper, we used signal length and normalized zero crossing rates together with EMG amplitude to assess elbow joint torqu...
Gespeichert in:
Veröffentlicht in: | Applied Mechanics and Materials 2013-11, Vol.461 (Advances in Bionic Engineering), p.608-617 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 617 |
---|---|
container_issue | Advances in Bionic Engineering |
container_start_page | 608 |
container_title | Applied Mechanics and Materials |
container_volume | 461 |
creator | Fan, Yue Yu Sun, Bao Feng Chen, Wan Zhong Lei, Jun |
description | Many studies have investigated the relationship between surface EMG and joint torque. Most studies have used EMG amplitude to assess elbow joint torque with dynamic models. In this paper, we used signal length and normalized zero crossing rates together with EMG amplitude to assess elbow joint torque with EMG-to-Torque models. We compared the performance of single feature EMG-to-Torque models and multi-feature EMG-to-Torque models by calculating the RMS error between estimated torque and true torque. The results show that multi-channel and multiple feature combination is superior to that of the single feature only. In this study, surface EMG signals were recorded from biceps and triceps muscles of 15 subjects. Single-channel and single feature linear model, multi-channel and single-feature model, multi-channel and single-feature model, multi-channel and multi-feature linear model were all used to assess elbow joint torque. The lowest RMS error is 7.6% achieved by four-channel multi-feature 18-order linear model. |
doi_str_mv | 10.4028/www.scientific.net/AMM.461.608 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1567059563</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3134631081</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-17dbdaf02bfbb75343ea7b8de3af94314f745189e576c65de8655d9e9513d233</originalsourceid><addsrcrecordid>eNqNkF1LwzAUhoMfoJv-h4Ig3rRLms9eKI45v9jwZvchTVPX0TUzySj792ZOULzy6sA5D-97eAC4RjAjMBejvu8zrxvThaZudNaZMBrP5xlhKGNQHIFzxFieciLyYzDAEHNBC5yzk68DTAuM2RkYeL-CkBFExDm4fdh1at3oZNoaHZxd7-y7U5tl3MxtZVqfBJuMvTfeR6S0ffJqmy4kC-s-tuYCnNaq9ebyew7B4nG6mDyns7enl8l4lmqci5AiXpWVqmFe1mXJKSbYKF6KymBVFwQjUnNCkSgM5UwzWhnBKK0KU1CEqxzjIbg5xG6cja0-yHXjtWlb1Rm79RJRxiEtKNujV3_Qld26Lj4nEWGQ04KRPXV3oLSz3jtTy41r1srtJIJyb1pG0_LHtIymZTQto2kZTceA-0NAcKrzwejlr57_RXwCheSM2w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1460759643</pqid></control><display><type>article</type><title>Dynamic Electromyographic Models to Assess Elbow Joint Torque</title><source>Scientific.net Journals</source><creator>Fan, Yue Yu ; Sun, Bao Feng ; Chen, Wan Zhong ; Lei, Jun</creator><creatorcontrib>Fan, Yue Yu ; Sun, Bao Feng ; Chen, Wan Zhong ; Lei, Jun</creatorcontrib><description>Many studies have investigated the relationship between surface EMG and joint torque. Most studies have used EMG amplitude to assess elbow joint torque with dynamic models. In this paper, we used signal length and normalized zero crossing rates together with EMG amplitude to assess elbow joint torque with EMG-to-Torque models. We compared the performance of single feature EMG-to-Torque models and multi-feature EMG-to-Torque models by calculating the RMS error between estimated torque and true torque. The results show that multi-channel and multiple feature combination is superior to that of the single feature only. In this study, surface EMG signals were recorded from biceps and triceps muscles of 15 subjects. Single-channel and single feature linear model, multi-channel and single-feature model, multi-channel and single-feature model, multi-channel and multi-feature linear model were all used to assess elbow joint torque. The lowest RMS error is 7.6% achieved by four-channel multi-feature 18-order linear model.</description><identifier>ISSN: 1660-9336</identifier><identifier>ISSN: 1662-7482</identifier><identifier>ISBN: 3037859326</identifier><identifier>ISBN: 9783037859322</identifier><identifier>EISSN: 1662-7482</identifier><identifier>DOI: 10.4028/www.scientific.net/AMM.461.608</identifier><language>eng</language><publisher>Zurich: Trans Tech Publications Ltd</publisher><subject>Amplitudes ; Dynamic models ; Dynamic tests ; Dynamics ; Elbows ; Errors ; Muscles ; Torque</subject><ispartof>Applied Mechanics and Materials, 2013-11, Vol.461 (Advances in Bionic Engineering), p.608-617</ispartof><rights>2014 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. Nov 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c328t-17dbdaf02bfbb75343ea7b8de3af94314f745189e576c65de8655d9e9513d233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/2850?width=600</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Fan, Yue Yu</creatorcontrib><creatorcontrib>Sun, Bao Feng</creatorcontrib><creatorcontrib>Chen, Wan Zhong</creatorcontrib><creatorcontrib>Lei, Jun</creatorcontrib><title>Dynamic Electromyographic Models to Assess Elbow Joint Torque</title><title>Applied Mechanics and Materials</title><description>Many studies have investigated the relationship between surface EMG and joint torque. Most studies have used EMG amplitude to assess elbow joint torque with dynamic models. In this paper, we used signal length and normalized zero crossing rates together with EMG amplitude to assess elbow joint torque with EMG-to-Torque models. We compared the performance of single feature EMG-to-Torque models and multi-feature EMG-to-Torque models by calculating the RMS error between estimated torque and true torque. The results show that multi-channel and multiple feature combination is superior to that of the single feature only. In this study, surface EMG signals were recorded from biceps and triceps muscles of 15 subjects. Single-channel and single feature linear model, multi-channel and single-feature model, multi-channel and single-feature model, multi-channel and multi-feature linear model were all used to assess elbow joint torque. The lowest RMS error is 7.6% achieved by four-channel multi-feature 18-order linear model.</description><subject>Amplitudes</subject><subject>Dynamic models</subject><subject>Dynamic tests</subject><subject>Dynamics</subject><subject>Elbows</subject><subject>Errors</subject><subject>Muscles</subject><subject>Torque</subject><issn>1660-9336</issn><issn>1662-7482</issn><issn>1662-7482</issn><isbn>3037859326</isbn><isbn>9783037859322</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNkF1LwzAUhoMfoJv-h4Ig3rRLms9eKI45v9jwZvchTVPX0TUzySj792ZOULzy6sA5D-97eAC4RjAjMBejvu8zrxvThaZudNaZMBrP5xlhKGNQHIFzxFieciLyYzDAEHNBC5yzk68DTAuM2RkYeL-CkBFExDm4fdh1at3oZNoaHZxd7-y7U5tl3MxtZVqfBJuMvTfeR6S0ffJqmy4kC-s-tuYCnNaq9ebyew7B4nG6mDyns7enl8l4lmqci5AiXpWVqmFe1mXJKSbYKF6KymBVFwQjUnNCkSgM5UwzWhnBKK0KU1CEqxzjIbg5xG6cja0-yHXjtWlb1Rm79RJRxiEtKNujV3_Qld26Lj4nEWGQ04KRPXV3oLSz3jtTy41r1srtJIJyb1pG0_LHtIymZTQto2kZTceA-0NAcKrzwejlr57_RXwCheSM2w</recordid><startdate>20131101</startdate><enddate>20131101</enddate><creator>Fan, Yue Yu</creator><creator>Sun, Bao Feng</creator><creator>Chen, Wan Zhong</creator><creator>Lei, Jun</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20131101</creationdate><title>Dynamic Electromyographic Models to Assess Elbow Joint Torque</title><author>Fan, Yue Yu ; Sun, Bao Feng ; Chen, Wan Zhong ; Lei, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-17dbdaf02bfbb75343ea7b8de3af94314f745189e576c65de8655d9e9513d233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Amplitudes</topic><topic>Dynamic models</topic><topic>Dynamic tests</topic><topic>Dynamics</topic><topic>Elbows</topic><topic>Errors</topic><topic>Muscles</topic><topic>Torque</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fan, Yue Yu</creatorcontrib><creatorcontrib>Sun, Bao Feng</creatorcontrib><creatorcontrib>Chen, Wan Zhong</creatorcontrib><creatorcontrib>Lei, Jun</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Applied Mechanics and Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fan, Yue Yu</au><au>Sun, Bao Feng</au><au>Chen, Wan Zhong</au><au>Lei, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic Electromyographic Models to Assess Elbow Joint Torque</atitle><jtitle>Applied Mechanics and Materials</jtitle><date>2013-11-01</date><risdate>2013</risdate><volume>461</volume><issue>Advances in Bionic Engineering</issue><spage>608</spage><epage>617</epage><pages>608-617</pages><issn>1660-9336</issn><issn>1662-7482</issn><eissn>1662-7482</eissn><isbn>3037859326</isbn><isbn>9783037859322</isbn><abstract>Many studies have investigated the relationship between surface EMG and joint torque. Most studies have used EMG amplitude to assess elbow joint torque with dynamic models. In this paper, we used signal length and normalized zero crossing rates together with EMG amplitude to assess elbow joint torque with EMG-to-Torque models. We compared the performance of single feature EMG-to-Torque models and multi-feature EMG-to-Torque models by calculating the RMS error between estimated torque and true torque. The results show that multi-channel and multiple feature combination is superior to that of the single feature only. In this study, surface EMG signals were recorded from biceps and triceps muscles of 15 subjects. Single-channel and single feature linear model, multi-channel and single-feature model, multi-channel and single-feature model, multi-channel and multi-feature linear model were all used to assess elbow joint torque. The lowest RMS error is 7.6% achieved by four-channel multi-feature 18-order linear model.</abstract><cop>Zurich</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/AMM.461.608</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1660-9336 |
ispartof | Applied Mechanics and Materials, 2013-11, Vol.461 (Advances in Bionic Engineering), p.608-617 |
issn | 1660-9336 1662-7482 1662-7482 |
language | eng |
recordid | cdi_proquest_miscellaneous_1567059563 |
source | Scientific.net Journals |
subjects | Amplitudes Dynamic models Dynamic tests Dynamics Elbows Errors Muscles Torque |
title | Dynamic Electromyographic Models to Assess Elbow Joint Torque |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T15%3A59%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20Electromyographic%20Models%20to%20Assess%20Elbow%20Joint%20Torque&rft.jtitle=Applied%20Mechanics%20and%20Materials&rft.au=Fan,%20Yue%20Yu&rft.date=2013-11-01&rft.volume=461&rft.issue=Advances%20in%20Bionic%20Engineering&rft.spage=608&rft.epage=617&rft.pages=608-617&rft.issn=1660-9336&rft.eissn=1662-7482&rft.isbn=3037859326&rft.isbn_list=9783037859322&rft_id=info:doi/10.4028/www.scientific.net/AMM.461.608&rft_dat=%3Cproquest_cross%3E3134631081%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1460759643&rft_id=info:pmid/&rfr_iscdi=true |