Similar Structure of Solution for the Model of Nonlinear Spherical Seepage in Composite Reservoir
The well testing model of nonlinear spherical percolation problems for composite reservoir is established under three different outer boundary conditions: closed boundary,constast pressure boundary,infinity boundary. the mathematical model are linearized by using variable substitution method, and th...
Gespeichert in:
Veröffentlicht in: | Applied Mechanics and Materials 2013-10, Vol.457-458 (Frontiers of Mechanical Engineering and Materials Engineering II), p.389-394 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 394 |
---|---|
container_issue | Frontiers of Mechanical Engineering and Materials Engineering II |
container_start_page | 389 |
container_title | Applied Mechanics and Materials |
container_volume | 457-458 |
creator | Leng, Li Hui Li, De Xing Zheng, Peng She Gui, Dong Dong Liu, Hua Ping Li, Shun Chu |
description | The well testing model of nonlinear spherical percolation problems for composite reservoir is established under three different outer boundary conditions: closed boundary,constast pressure boundary,infinity boundary. the mathematical model are linearized by using variable substitution method, and then its solutions are derived by Laplace transform. According to the theory of similar structure of solutions to the differential equations, we obtain the similar structure of the solutions .The theory of similar structure is beneficial to understand the inherent laws of solutions and analyze the influence of parameters to solutions. |
doi_str_mv | 10.4028/www.scientific.net/AMM.457-458.389 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1567058772</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3115146221</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-b72ccae611bb4c8da94f74de8b7136dc34b14ce364f37f29b6ae14dba7ab30923</originalsourceid><addsrcrecordid>eNqNkUtr3DAUhUUfkDTJfxB0Ewp2JEuW5GUySR-QaSHTroUsX3cUPJIjyRn676vpFFq66uJyF-fccw98CL2jpOakUVf7_b5O1oHPbnS29pCvrtfrmrey4q2qmepeoFMqRFNJrpqX6KKTihEmVds1XL76pZGqY0ycoDcpPRIiOOXqFJmN27nJRLzJcbF5iYDDiDdhWrILHo8h4rwFvA4DTAflc_CT83A4mLcQnTUT3gDM5jtg5_Eq7OaQXAb8AAnic3DxHL0ezZTg4vc-Q9_e331dfazuv3z4tLq-r2xplateNtYaEJT2PbdqMB0fJR9A9ZIyMVjGe8otMMFHJsem64UByofeSNMz0jXsDF0ec-cYnhZIWe9csjBNxkNYkqatkKRVUh6sb_-xPoYl-tJOU86lpKJraXHdHF02hpQijHqObmfiD02JPlDRhYr-Q0UXKrpQ0YVKGaULlRJyewzJ0fiUwW7_-vX_MT8BKiOe0w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1447716951</pqid></control><display><type>article</type><title>Similar Structure of Solution for the Model of Nonlinear Spherical Seepage in Composite Reservoir</title><source>Scientific.net Journals</source><creator>Leng, Li Hui ; Li, De Xing ; Zheng, Peng She ; Gui, Dong Dong ; Liu, Hua Ping ; Li, Shun Chu</creator><creatorcontrib>Leng, Li Hui ; Li, De Xing ; Zheng, Peng She ; Gui, Dong Dong ; Liu, Hua Ping ; Li, Shun Chu</creatorcontrib><description>The well testing model of nonlinear spherical percolation problems for composite reservoir is established under three different outer boundary conditions: closed boundary,constast pressure boundary,infinity boundary. the mathematical model are linearized by using variable substitution method, and then its solutions are derived by Laplace transform. According to the theory of similar structure of solutions to the differential equations, we obtain the similar structure of the solutions .The theory of similar structure is beneficial to understand the inherent laws of solutions and analyze the influence of parameters to solutions.</description><identifier>ISSN: 1660-9336</identifier><identifier>ISSN: 1662-7482</identifier><identifier>ISBN: 9783037859247</identifier><identifier>ISBN: 3037859245</identifier><identifier>EISSN: 1662-7482</identifier><identifier>DOI: 10.4028/www.scientific.net/AMM.457-458.389</identifier><language>eng</language><publisher>Zurich: Trans Tech Publications Ltd</publisher><subject>Boundaries ; Differential equations ; Laplace transforms ; Mathematical analysis ; Mathematical models ; Nonlinearity ; Percolation ; Reservoirs</subject><ispartof>Applied Mechanics and Materials, 2013-10, Vol.457-458 (Frontiers of Mechanical Engineering and Materials Engineering II), p.389-394</ispartof><rights>2014 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. Oct 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c336t-b72ccae611bb4c8da94f74de8b7136dc34b14ce364f37f29b6ae14dba7ab30923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/2829?width=600</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Leng, Li Hui</creatorcontrib><creatorcontrib>Li, De Xing</creatorcontrib><creatorcontrib>Zheng, Peng She</creatorcontrib><creatorcontrib>Gui, Dong Dong</creatorcontrib><creatorcontrib>Liu, Hua Ping</creatorcontrib><creatorcontrib>Li, Shun Chu</creatorcontrib><title>Similar Structure of Solution for the Model of Nonlinear Spherical Seepage in Composite Reservoir</title><title>Applied Mechanics and Materials</title><description>The well testing model of nonlinear spherical percolation problems for composite reservoir is established under three different outer boundary conditions: closed boundary,constast pressure boundary,infinity boundary. the mathematical model are linearized by using variable substitution method, and then its solutions are derived by Laplace transform. According to the theory of similar structure of solutions to the differential equations, we obtain the similar structure of the solutions .The theory of similar structure is beneficial to understand the inherent laws of solutions and analyze the influence of parameters to solutions.</description><subject>Boundaries</subject><subject>Differential equations</subject><subject>Laplace transforms</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Nonlinearity</subject><subject>Percolation</subject><subject>Reservoirs</subject><issn>1660-9336</issn><issn>1662-7482</issn><issn>1662-7482</issn><isbn>9783037859247</isbn><isbn>3037859245</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNkUtr3DAUhUUfkDTJfxB0Ewp2JEuW5GUySR-QaSHTroUsX3cUPJIjyRn676vpFFq66uJyF-fccw98CL2jpOakUVf7_b5O1oHPbnS29pCvrtfrmrey4q2qmepeoFMqRFNJrpqX6KKTihEmVds1XL76pZGqY0ycoDcpPRIiOOXqFJmN27nJRLzJcbF5iYDDiDdhWrILHo8h4rwFvA4DTAflc_CT83A4mLcQnTUT3gDM5jtg5_Eq7OaQXAb8AAnic3DxHL0ezZTg4vc-Q9_e331dfazuv3z4tLq-r2xplateNtYaEJT2PbdqMB0fJR9A9ZIyMVjGe8otMMFHJsem64UByofeSNMz0jXsDF0ec-cYnhZIWe9csjBNxkNYkqatkKRVUh6sb_-xPoYl-tJOU86lpKJraXHdHF02hpQijHqObmfiD02JPlDRhYr-Q0UXKrpQ0YVKGaULlRJyewzJ0fiUwW7_-vX_MT8BKiOe0w</recordid><startdate>20131001</startdate><enddate>20131001</enddate><creator>Leng, Li Hui</creator><creator>Li, De Xing</creator><creator>Zheng, Peng She</creator><creator>Gui, Dong Dong</creator><creator>Liu, Hua Ping</creator><creator>Li, Shun Chu</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20131001</creationdate><title>Similar Structure of Solution for the Model of Nonlinear Spherical Seepage in Composite Reservoir</title><author>Leng, Li Hui ; Li, De Xing ; Zheng, Peng She ; Gui, Dong Dong ; Liu, Hua Ping ; Li, Shun Chu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-b72ccae611bb4c8da94f74de8b7136dc34b14ce364f37f29b6ae14dba7ab30923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Boundaries</topic><topic>Differential equations</topic><topic>Laplace transforms</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Nonlinearity</topic><topic>Percolation</topic><topic>Reservoirs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leng, Li Hui</creatorcontrib><creatorcontrib>Li, De Xing</creatorcontrib><creatorcontrib>Zheng, Peng She</creatorcontrib><creatorcontrib>Gui, Dong Dong</creatorcontrib><creatorcontrib>Liu, Hua Ping</creatorcontrib><creatorcontrib>Li, Shun Chu</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Applied Mechanics and Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leng, Li Hui</au><au>Li, De Xing</au><au>Zheng, Peng She</au><au>Gui, Dong Dong</au><au>Liu, Hua Ping</au><au>Li, Shun Chu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Similar Structure of Solution for the Model of Nonlinear Spherical Seepage in Composite Reservoir</atitle><jtitle>Applied Mechanics and Materials</jtitle><date>2013-10-01</date><risdate>2013</risdate><volume>457-458</volume><issue>Frontiers of Mechanical Engineering and Materials Engineering II</issue><spage>389</spage><epage>394</epage><pages>389-394</pages><issn>1660-9336</issn><issn>1662-7482</issn><eissn>1662-7482</eissn><isbn>9783037859247</isbn><isbn>3037859245</isbn><abstract>The well testing model of nonlinear spherical percolation problems for composite reservoir is established under three different outer boundary conditions: closed boundary,constast pressure boundary,infinity boundary. the mathematical model are linearized by using variable substitution method, and then its solutions are derived by Laplace transform. According to the theory of similar structure of solutions to the differential equations, we obtain the similar structure of the solutions .The theory of similar structure is beneficial to understand the inherent laws of solutions and analyze the influence of parameters to solutions.</abstract><cop>Zurich</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/AMM.457-458.389</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1660-9336 |
ispartof | Applied Mechanics and Materials, 2013-10, Vol.457-458 (Frontiers of Mechanical Engineering and Materials Engineering II), p.389-394 |
issn | 1660-9336 1662-7482 1662-7482 |
language | eng |
recordid | cdi_proquest_miscellaneous_1567058772 |
source | Scientific.net Journals |
subjects | Boundaries Differential equations Laplace transforms Mathematical analysis Mathematical models Nonlinearity Percolation Reservoirs |
title | Similar Structure of Solution for the Model of Nonlinear Spherical Seepage in Composite Reservoir |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T00%3A43%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Similar%20Structure%20of%20Solution%20for%20the%20Model%20of%20Nonlinear%20Spherical%20Seepage%20in%20Composite%20Reservoir&rft.jtitle=Applied%20Mechanics%20and%20Materials&rft.au=Leng,%20Li%20Hui&rft.date=2013-10-01&rft.volume=457-458&rft.issue=Frontiers%20of%20Mechanical%20Engineering%20and%20Materials%20Engineering%20II&rft.spage=389&rft.epage=394&rft.pages=389-394&rft.issn=1660-9336&rft.eissn=1662-7482&rft.isbn=9783037859247&rft.isbn_list=3037859245&rft_id=info:doi/10.4028/www.scientific.net/AMM.457-458.389&rft_dat=%3Cproquest_cross%3E3115146221%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1447716951&rft_id=info:pmid/&rfr_iscdi=true |