Similar Structure of Solution for the Model of Nonlinear Spherical Seepage in Composite Reservoir

The well testing model of nonlinear spherical percolation problems for composite reservoir is established under three different outer boundary conditions: closed boundary,constast pressure boundary,infinity boundary. the mathematical model are linearized by using variable substitution method, and th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Mechanics and Materials 2013-10, Vol.457-458 (Frontiers of Mechanical Engineering and Materials Engineering II), p.389-394
Hauptverfasser: Leng, Li Hui, Li, De Xing, Zheng, Peng She, Gui, Dong Dong, Liu, Hua Ping, Li, Shun Chu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 394
container_issue Frontiers of Mechanical Engineering and Materials Engineering II
container_start_page 389
container_title Applied Mechanics and Materials
container_volume 457-458
creator Leng, Li Hui
Li, De Xing
Zheng, Peng She
Gui, Dong Dong
Liu, Hua Ping
Li, Shun Chu
description The well testing model of nonlinear spherical percolation problems for composite reservoir is established under three different outer boundary conditions: closed boundary,constast pressure boundary,infinity boundary. the mathematical model are linearized by using variable substitution method, and then its solutions are derived by Laplace transform. According to the theory of similar structure of solutions to the differential equations, we obtain the similar structure of the solutions .The theory of similar structure is beneficial to understand the inherent laws of solutions and analyze the influence of parameters to solutions.
doi_str_mv 10.4028/www.scientific.net/AMM.457-458.389
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1567058772</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3115146221</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-b72ccae611bb4c8da94f74de8b7136dc34b14ce364f37f29b6ae14dba7ab30923</originalsourceid><addsrcrecordid>eNqNkUtr3DAUhUUfkDTJfxB0Ewp2JEuW5GUySR-QaSHTroUsX3cUPJIjyRn676vpFFq66uJyF-fccw98CL2jpOakUVf7_b5O1oHPbnS29pCvrtfrmrey4q2qmepeoFMqRFNJrpqX6KKTihEmVds1XL76pZGqY0ycoDcpPRIiOOXqFJmN27nJRLzJcbF5iYDDiDdhWrILHo8h4rwFvA4DTAflc_CT83A4mLcQnTUT3gDM5jtg5_Eq7OaQXAb8AAnic3DxHL0ezZTg4vc-Q9_e331dfazuv3z4tLq-r2xplateNtYaEJT2PbdqMB0fJR9A9ZIyMVjGe8otMMFHJsem64UByofeSNMz0jXsDF0ec-cYnhZIWe9csjBNxkNYkqatkKRVUh6sb_-xPoYl-tJOU86lpKJraXHdHF02hpQijHqObmfiD02JPlDRhYr-Q0UXKrpQ0YVKGaULlRJyewzJ0fiUwW7_-vX_MT8BKiOe0w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1447716951</pqid></control><display><type>article</type><title>Similar Structure of Solution for the Model of Nonlinear Spherical Seepage in Composite Reservoir</title><source>Scientific.net Journals</source><creator>Leng, Li Hui ; Li, De Xing ; Zheng, Peng She ; Gui, Dong Dong ; Liu, Hua Ping ; Li, Shun Chu</creator><creatorcontrib>Leng, Li Hui ; Li, De Xing ; Zheng, Peng She ; Gui, Dong Dong ; Liu, Hua Ping ; Li, Shun Chu</creatorcontrib><description>The well testing model of nonlinear spherical percolation problems for composite reservoir is established under three different outer boundary conditions: closed boundary,constast pressure boundary,infinity boundary. the mathematical model are linearized by using variable substitution method, and then its solutions are derived by Laplace transform. According to the theory of similar structure of solutions to the differential equations, we obtain the similar structure of the solutions .The theory of similar structure is beneficial to understand the inherent laws of solutions and analyze the influence of parameters to solutions.</description><identifier>ISSN: 1660-9336</identifier><identifier>ISSN: 1662-7482</identifier><identifier>ISBN: 9783037859247</identifier><identifier>ISBN: 3037859245</identifier><identifier>EISSN: 1662-7482</identifier><identifier>DOI: 10.4028/www.scientific.net/AMM.457-458.389</identifier><language>eng</language><publisher>Zurich: Trans Tech Publications Ltd</publisher><subject>Boundaries ; Differential equations ; Laplace transforms ; Mathematical analysis ; Mathematical models ; Nonlinearity ; Percolation ; Reservoirs</subject><ispartof>Applied Mechanics and Materials, 2013-10, Vol.457-458 (Frontiers of Mechanical Engineering and Materials Engineering II), p.389-394</ispartof><rights>2014 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. Oct 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c336t-b72ccae611bb4c8da94f74de8b7136dc34b14ce364f37f29b6ae14dba7ab30923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/2829?width=600</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Leng, Li Hui</creatorcontrib><creatorcontrib>Li, De Xing</creatorcontrib><creatorcontrib>Zheng, Peng She</creatorcontrib><creatorcontrib>Gui, Dong Dong</creatorcontrib><creatorcontrib>Liu, Hua Ping</creatorcontrib><creatorcontrib>Li, Shun Chu</creatorcontrib><title>Similar Structure of Solution for the Model of Nonlinear Spherical Seepage in Composite Reservoir</title><title>Applied Mechanics and Materials</title><description>The well testing model of nonlinear spherical percolation problems for composite reservoir is established under three different outer boundary conditions: closed boundary,constast pressure boundary,infinity boundary. the mathematical model are linearized by using variable substitution method, and then its solutions are derived by Laplace transform. According to the theory of similar structure of solutions to the differential equations, we obtain the similar structure of the solutions .The theory of similar structure is beneficial to understand the inherent laws of solutions and analyze the influence of parameters to solutions.</description><subject>Boundaries</subject><subject>Differential equations</subject><subject>Laplace transforms</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Nonlinearity</subject><subject>Percolation</subject><subject>Reservoirs</subject><issn>1660-9336</issn><issn>1662-7482</issn><issn>1662-7482</issn><isbn>9783037859247</isbn><isbn>3037859245</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNkUtr3DAUhUUfkDTJfxB0Ewp2JEuW5GUySR-QaSHTroUsX3cUPJIjyRn676vpFFq66uJyF-fccw98CL2jpOakUVf7_b5O1oHPbnS29pCvrtfrmrey4q2qmepeoFMqRFNJrpqX6KKTihEmVds1XL76pZGqY0ycoDcpPRIiOOXqFJmN27nJRLzJcbF5iYDDiDdhWrILHo8h4rwFvA4DTAflc_CT83A4mLcQnTUT3gDM5jtg5_Eq7OaQXAb8AAnic3DxHL0ezZTg4vc-Q9_e331dfazuv3z4tLq-r2xplateNtYaEJT2PbdqMB0fJR9A9ZIyMVjGe8otMMFHJsem64UByofeSNMz0jXsDF0ec-cYnhZIWe9csjBNxkNYkqatkKRVUh6sb_-xPoYl-tJOU86lpKJraXHdHF02hpQijHqObmfiD02JPlDRhYr-Q0UXKrpQ0YVKGaULlRJyewzJ0fiUwW7_-vX_MT8BKiOe0w</recordid><startdate>20131001</startdate><enddate>20131001</enddate><creator>Leng, Li Hui</creator><creator>Li, De Xing</creator><creator>Zheng, Peng She</creator><creator>Gui, Dong Dong</creator><creator>Liu, Hua Ping</creator><creator>Li, Shun Chu</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20131001</creationdate><title>Similar Structure of Solution for the Model of Nonlinear Spherical Seepage in Composite Reservoir</title><author>Leng, Li Hui ; Li, De Xing ; Zheng, Peng She ; Gui, Dong Dong ; Liu, Hua Ping ; Li, Shun Chu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-b72ccae611bb4c8da94f74de8b7136dc34b14ce364f37f29b6ae14dba7ab30923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Boundaries</topic><topic>Differential equations</topic><topic>Laplace transforms</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Nonlinearity</topic><topic>Percolation</topic><topic>Reservoirs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leng, Li Hui</creatorcontrib><creatorcontrib>Li, De Xing</creatorcontrib><creatorcontrib>Zheng, Peng She</creatorcontrib><creatorcontrib>Gui, Dong Dong</creatorcontrib><creatorcontrib>Liu, Hua Ping</creatorcontrib><creatorcontrib>Li, Shun Chu</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Applied Mechanics and Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leng, Li Hui</au><au>Li, De Xing</au><au>Zheng, Peng She</au><au>Gui, Dong Dong</au><au>Liu, Hua Ping</au><au>Li, Shun Chu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Similar Structure of Solution for the Model of Nonlinear Spherical Seepage in Composite Reservoir</atitle><jtitle>Applied Mechanics and Materials</jtitle><date>2013-10-01</date><risdate>2013</risdate><volume>457-458</volume><issue>Frontiers of Mechanical Engineering and Materials Engineering II</issue><spage>389</spage><epage>394</epage><pages>389-394</pages><issn>1660-9336</issn><issn>1662-7482</issn><eissn>1662-7482</eissn><isbn>9783037859247</isbn><isbn>3037859245</isbn><abstract>The well testing model of nonlinear spherical percolation problems for composite reservoir is established under three different outer boundary conditions: closed boundary,constast pressure boundary,infinity boundary. the mathematical model are linearized by using variable substitution method, and then its solutions are derived by Laplace transform. According to the theory of similar structure of solutions to the differential equations, we obtain the similar structure of the solutions .The theory of similar structure is beneficial to understand the inherent laws of solutions and analyze the influence of parameters to solutions.</abstract><cop>Zurich</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/AMM.457-458.389</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1660-9336
ispartof Applied Mechanics and Materials, 2013-10, Vol.457-458 (Frontiers of Mechanical Engineering and Materials Engineering II), p.389-394
issn 1660-9336
1662-7482
1662-7482
language eng
recordid cdi_proquest_miscellaneous_1567058772
source Scientific.net Journals
subjects Boundaries
Differential equations
Laplace transforms
Mathematical analysis
Mathematical models
Nonlinearity
Percolation
Reservoirs
title Similar Structure of Solution for the Model of Nonlinear Spherical Seepage in Composite Reservoir
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T00%3A43%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Similar%20Structure%20of%20Solution%20for%20the%20Model%20of%20Nonlinear%20Spherical%20Seepage%20in%20Composite%20Reservoir&rft.jtitle=Applied%20Mechanics%20and%20Materials&rft.au=Leng,%20Li%20Hui&rft.date=2013-10-01&rft.volume=457-458&rft.issue=Frontiers%20of%20Mechanical%20Engineering%20and%20Materials%20Engineering%20II&rft.spage=389&rft.epage=394&rft.pages=389-394&rft.issn=1660-9336&rft.eissn=1662-7482&rft.isbn=9783037859247&rft.isbn_list=3037859245&rft_id=info:doi/10.4028/www.scientific.net/AMM.457-458.389&rft_dat=%3Cproquest_cross%3E3115146221%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1447716951&rft_id=info:pmid/&rfr_iscdi=true