Voltage Stability Margin Assessment Using Multilayer Feed Forward Neural Network

With the deregulation of electricity markets, the system operation strategies have changed in recent years. The systems are operated with smaller margins. How to maintain the voltage stability of the power systems have become an important issue.This paper presents an Artificial Feed Forward Neural N...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Mechanics and Materials 2014-06, Vol.573 (Advancements in Automation and Control Technologies), p.661-667
Hauptverfasser: Babulal, C.K., Naganathan, G.S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 667
container_issue Advancements in Automation and Control Technologies
container_start_page 661
container_title Applied Mechanics and Materials
container_volume 573
creator Babulal, C.K.
Naganathan, G.S.
description With the deregulation of electricity markets, the system operation strategies have changed in recent years. The systems are operated with smaller margins. How to maintain the voltage stability of the power systems have become an important issue.This paper presents an Artificial Feed Forward Neural Network (FFNN) approach for the assessment of power system voltage stability. This paper uses some input feature sets using real power, reactive power, voltage magnitude and phase angle to train the neural network (NN). The target output for each input pattern is obtained by computing the distance to voltage collapse from the current system operating point using a continuation power flow type algorithm. This paper compared different input feature sets and showed that reactive power and the phase angle are the best predictors of voltage stability margin. Further, the paper shows that the proposed ANN based method can successfully estimate the voltage stability margin not only under normal operation but also under N-1 contingency situations. The proposed method has been applied to the IEEE 14 and IEEE 30 bus test system. The continuation power flow technique run with PSAT and the proposed method is implemented in MATLAB.
doi_str_mv 10.4028/www.scientific.net/AMM.573.661
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1567058529</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3340924561</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-5e5dd074ce48bb8df95f91df687d76bef0ea2940b82cff8c8746443044406df63</originalsourceid><addsrcrecordid>eNqNkV1L5DAUhoOu4Od_KAjiTWvSfDS9EQdxdMHZXfDjNqTpyRjttJqklPn3RkfYZa-8ei_Ow_seeBA6IbhguJRn0zQVwTjoo7POFD3Es9liUfCKFkKQLbRHhCjzislyGx3VlaSYSspJyfiPzxvOa0rFLtoP4RljwQiTe-jP49BFvYTsLurGdS6us4X2S9dnsxAghFWayx6C65fZYuyi6_QafDYHaLP54Cft2-wXjF53KeI0-JdDtGN1F-DoKw_Qw_zq_vImv_19_fNydpsbKuuYc-BtiytmgMmmka2tua1Ja4Ws2ko0YDHosma4kaWxVhpZMcEYxYwxLBJGD9DppvfVD28jhKhWLhjoOt3DMAZFuKgwl7ysE3r8H_o8jL5P3yWKSkK5xDRR5xvK-CEED1a9erfSfq0IVh8CVBKg_gpQSYBKAlQSoJKAVHCxKYhe9yGCefpn53sV787qlR8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1538135803</pqid></control><display><type>article</type><title>Voltage Stability Margin Assessment Using Multilayer Feed Forward Neural Network</title><source>Scientific.net Journals</source><creator>Babulal, C.K. ; Naganathan, G.S.</creator><creatorcontrib>Babulal, C.K. ; Naganathan, G.S.</creatorcontrib><description>With the deregulation of electricity markets, the system operation strategies have changed in recent years. The systems are operated with smaller margins. How to maintain the voltage stability of the power systems have become an important issue.This paper presents an Artificial Feed Forward Neural Network (FFNN) approach for the assessment of power system voltage stability. This paper uses some input feature sets using real power, reactive power, voltage magnitude and phase angle to train the neural network (NN). The target output for each input pattern is obtained by computing the distance to voltage collapse from the current system operating point using a continuation power flow type algorithm. This paper compared different input feature sets and showed that reactive power and the phase angle are the best predictors of voltage stability margin. Further, the paper shows that the proposed ANN based method can successfully estimate the voltage stability margin not only under normal operation but also under N-1 contingency situations. The proposed method has been applied to the IEEE 14 and IEEE 30 bus test system. The continuation power flow technique run with PSAT and the proposed method is implemented in MATLAB.</description><identifier>ISSN: 1660-9336</identifier><identifier>ISSN: 1662-7482</identifier><identifier>ISBN: 9783038351245</identifier><identifier>ISBN: 3038351245</identifier><identifier>EISSN: 1662-7482</identifier><identifier>DOI: 10.4028/www.scientific.net/AMM.573.661</identifier><language>eng</language><publisher>Zurich: Trans Tech Publications Ltd</publisher><subject>Assessments ; Electric power generation ; Learning theory ; Matlab ; Neural networks ; Power flow ; Reactive power ; Voltage stability</subject><ispartof>Applied Mechanics and Materials, 2014-06, Vol.573 (Advancements in Automation and Control Technologies), p.661-667</ispartof><rights>2014 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. Jun 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-5e5dd074ce48bb8df95f91df687d76bef0ea2940b82cff8c8746443044406df63</citedby><cites>FETCH-LOGICAL-c389t-5e5dd074ce48bb8df95f91df687d76bef0ea2940b82cff8c8746443044406df63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/3230?width=600</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Babulal, C.K.</creatorcontrib><creatorcontrib>Naganathan, G.S.</creatorcontrib><title>Voltage Stability Margin Assessment Using Multilayer Feed Forward Neural Network</title><title>Applied Mechanics and Materials</title><description>With the deregulation of electricity markets, the system operation strategies have changed in recent years. The systems are operated with smaller margins. How to maintain the voltage stability of the power systems have become an important issue.This paper presents an Artificial Feed Forward Neural Network (FFNN) approach for the assessment of power system voltage stability. This paper uses some input feature sets using real power, reactive power, voltage magnitude and phase angle to train the neural network (NN). The target output for each input pattern is obtained by computing the distance to voltage collapse from the current system operating point using a continuation power flow type algorithm. This paper compared different input feature sets and showed that reactive power and the phase angle are the best predictors of voltage stability margin. Further, the paper shows that the proposed ANN based method can successfully estimate the voltage stability margin not only under normal operation but also under N-1 contingency situations. The proposed method has been applied to the IEEE 14 and IEEE 30 bus test system. The continuation power flow technique run with PSAT and the proposed method is implemented in MATLAB.</description><subject>Assessments</subject><subject>Electric power generation</subject><subject>Learning theory</subject><subject>Matlab</subject><subject>Neural networks</subject><subject>Power flow</subject><subject>Reactive power</subject><subject>Voltage stability</subject><issn>1660-9336</issn><issn>1662-7482</issn><issn>1662-7482</issn><isbn>9783038351245</isbn><isbn>3038351245</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNkV1L5DAUhoOu4Od_KAjiTWvSfDS9EQdxdMHZXfDjNqTpyRjttJqklPn3RkfYZa-8ei_Ow_seeBA6IbhguJRn0zQVwTjoo7POFD3Es9liUfCKFkKQLbRHhCjzislyGx3VlaSYSspJyfiPzxvOa0rFLtoP4RljwQiTe-jP49BFvYTsLurGdS6us4X2S9dnsxAghFWayx6C65fZYuyi6_QafDYHaLP54Cft2-wXjF53KeI0-JdDtGN1F-DoKw_Qw_zq_vImv_19_fNydpsbKuuYc-BtiytmgMmmka2tua1Ja4Ws2ko0YDHosma4kaWxVhpZMcEYxYwxLBJGD9DppvfVD28jhKhWLhjoOt3DMAZFuKgwl7ysE3r8H_o8jL5P3yWKSkK5xDRR5xvK-CEED1a9erfSfq0IVh8CVBKg_gpQSYBKAlQSoJKAVHCxKYhe9yGCefpn53sV787qlR8</recordid><startdate>20140618</startdate><enddate>20140618</enddate><creator>Babulal, C.K.</creator><creator>Naganathan, G.S.</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7SC</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140618</creationdate><title>Voltage Stability Margin Assessment Using Multilayer Feed Forward Neural Network</title><author>Babulal, C.K. ; Naganathan, G.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-5e5dd074ce48bb8df95f91df687d76bef0ea2940b82cff8c8746443044406df63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Assessments</topic><topic>Electric power generation</topic><topic>Learning theory</topic><topic>Matlab</topic><topic>Neural networks</topic><topic>Power flow</topic><topic>Reactive power</topic><topic>Voltage stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Babulal, C.K.</creatorcontrib><creatorcontrib>Naganathan, G.S.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied Mechanics and Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Babulal, C.K.</au><au>Naganathan, G.S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Voltage Stability Margin Assessment Using Multilayer Feed Forward Neural Network</atitle><jtitle>Applied Mechanics and Materials</jtitle><date>2014-06-18</date><risdate>2014</risdate><volume>573</volume><issue>Advancements in Automation and Control Technologies</issue><spage>661</spage><epage>667</epage><pages>661-667</pages><issn>1660-9336</issn><issn>1662-7482</issn><eissn>1662-7482</eissn><isbn>9783038351245</isbn><isbn>3038351245</isbn><abstract>With the deregulation of electricity markets, the system operation strategies have changed in recent years. The systems are operated with smaller margins. How to maintain the voltage stability of the power systems have become an important issue.This paper presents an Artificial Feed Forward Neural Network (FFNN) approach for the assessment of power system voltage stability. This paper uses some input feature sets using real power, reactive power, voltage magnitude and phase angle to train the neural network (NN). The target output for each input pattern is obtained by computing the distance to voltage collapse from the current system operating point using a continuation power flow type algorithm. This paper compared different input feature sets and showed that reactive power and the phase angle are the best predictors of voltage stability margin. Further, the paper shows that the proposed ANN based method can successfully estimate the voltage stability margin not only under normal operation but also under N-1 contingency situations. The proposed method has been applied to the IEEE 14 and IEEE 30 bus test system. The continuation power flow technique run with PSAT and the proposed method is implemented in MATLAB.</abstract><cop>Zurich</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/AMM.573.661</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1660-9336
ispartof Applied Mechanics and Materials, 2014-06, Vol.573 (Advancements in Automation and Control Technologies), p.661-667
issn 1660-9336
1662-7482
1662-7482
language eng
recordid cdi_proquest_miscellaneous_1567058529
source Scientific.net Journals
subjects Assessments
Electric power generation
Learning theory
Matlab
Neural networks
Power flow
Reactive power
Voltage stability
title Voltage Stability Margin Assessment Using Multilayer Feed Forward Neural Network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T05%3A40%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Voltage%20Stability%20Margin%20Assessment%20Using%20Multilayer%20Feed%20Forward%20Neural%20Network&rft.jtitle=Applied%20Mechanics%20and%20Materials&rft.au=Babulal,%20C.K.&rft.date=2014-06-18&rft.volume=573&rft.issue=Advancements%20in%20Automation%20and%20Control%20Technologies&rft.spage=661&rft.epage=667&rft.pages=661-667&rft.issn=1660-9336&rft.eissn=1662-7482&rft.isbn=9783038351245&rft.isbn_list=3038351245&rft_id=info:doi/10.4028/www.scientific.net/AMM.573.661&rft_dat=%3Cproquest_cross%3E3340924561%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1538135803&rft_id=info:pmid/&rfr_iscdi=true