Glycogen synthase kinase 3 beta in somites plays a role during the angiogenesis of zebrafish embryos

Glycogen synthase kinase 3 beta (Gsk3b) acts as a negative modulator in endothelial cells through the Wnt/β–catenin/PI3K/AKT/Gsk3b axis in cancer‐induced angiogenesis. However, the function of Gsk3b during embryonic angiogenesis remains unclear. Here, either gsk3b knockdown by morpholino or Gsk3b lo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The FEBS journal 2014-10, Vol.281 (19), p.4367-4383
Hauptverfasser: Lee, Hung‐Chieh, Lin, Yi‐Zhen, Lai, Yen‐Ting, Huang, Wei‐Jhen, Hu, Jia‐Rung, Tsai, Jen‐Ning, Tsai, Huai‐Jen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4383
container_issue 19
container_start_page 4367
container_title The FEBS journal
container_volume 281
creator Lee, Hung‐Chieh
Lin, Yi‐Zhen
Lai, Yen‐Ting
Huang, Wei‐Jhen
Hu, Jia‐Rung
Tsai, Jen‐Ning
Tsai, Huai‐Jen
description Glycogen synthase kinase 3 beta (Gsk3b) acts as a negative modulator in endothelial cells through the Wnt/β–catenin/PI3K/AKT/Gsk3b axis in cancer‐induced angiogenesis. However, the function of Gsk3b during embryonic angiogenesis remains unclear. Here, either gsk3b knockdown by morpholino or Gsk3b loss of activity by LiCl treatment had serious phenotypic consequences, such as defects in the positioning and patterning of intersegmental blood vessels and reduction of vegfaa121 and vegfaa165 transcripts. In embryos treated with the phosphatidylinositol 3‐kinase inhibitor, angiogenesis was severely inhibited, along with reduced Wnt, phosphorylated AKT and phosphorylated Gsk3b, suggesting that the remaining Gsk3b in somites could still degrade β–catenin, resulting in decreased vascular endothelial growth factor Aa(VegfAa) expression. However, in gsk3b‐mRNA‐overexpressed embryos, intersegmental vessels ectopically sprouted by the increase in phosphorylated‐Gsk3b which prevented the degradation of β–catenin and promoted the increase in phosphorylated AKT activity, thus increasing VegfAa expression in somites. Interestingly, the Gsk3b‐dependent cross‐talk between PI3K/AKT and Wnt/β–catenin suggests that Wnt/β–catenin and PI3K/AKT interaction controls embryonic angiogenesis by a positive feedback loop rather than a hierarchical framework such as that found in cancer‐induced angiogenesis. Thus, both active and inactive forms of Gsk3b mediate the cooperative signaling between Wnt/β–catenin and PI3K/AKT to control VegfAa expression in somites during angiogenesis in zebrafish embryos.
doi_str_mv 10.1111/febs.12942
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1567052615</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3447985281</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4872-39b024753b3fd7f1afc2f6566b36d72c7e61eae34cfa45fa8c1807e8553b9ace3</originalsourceid><addsrcrecordid>eNp9kE1v1DAQhi0EoqVw4QeAJS4IaYu_kxxL1RakShxKJW6W44x3XZJ48SRC4dfjsG0PHJjLWPIzj2ZeQl5zdspLfQzQ4ikXjRJPyDGvlNgoo-unj2_1_Yi8QLxjTGrVNM_JkdBMG9PIY9Jd9YtPWxgpLuO0cwj0RxzXJmkLk6Ox_KQhToB037sFqaM59UC7OcdxS6cdUDdu46oAjEhToL-hzS5E3FEY2rwkfEmeBdcjvLrvJ-T28uLb-efN9derL-dn1xuv6kpsZNMyoSotWxm6KnAXvAimLNpK01XCV2A4OJDKB6d0cLXnNaug1mWicR7kCXl_8O5z-jkDTnaI6KHv3QhpRsu1qZgWhuuCvvsHvUtzHst2K2UMl7oxhfpwoHxOiBmC3ec4uLxYzuyavV2zt3-zL_Cbe-XcDtA9og9hF4AfgF-xh-U_Knt58enmQfr2MBNcsm6bI9rbG8G4YaV0uUf-AfitmCw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1566613596</pqid></control><display><type>article</type><title>Glycogen synthase kinase 3 beta in somites plays a role during the angiogenesis of zebrafish embryos</title><source>MEDLINE</source><source>Wiley Free Content</source><source>IngentaConnect Free/Open Access Journals</source><source>Wiley Online Library All Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Lee, Hung‐Chieh ; Lin, Yi‐Zhen ; Lai, Yen‐Ting ; Huang, Wei‐Jhen ; Hu, Jia‐Rung ; Tsai, Jen‐Ning ; Tsai, Huai‐Jen</creator><creatorcontrib>Lee, Hung‐Chieh ; Lin, Yi‐Zhen ; Lai, Yen‐Ting ; Huang, Wei‐Jhen ; Hu, Jia‐Rung ; Tsai, Jen‐Ning ; Tsai, Huai‐Jen</creatorcontrib><description>Glycogen synthase kinase 3 beta (Gsk3b) acts as a negative modulator in endothelial cells through the Wnt/β–catenin/PI3K/AKT/Gsk3b axis in cancer‐induced angiogenesis. However, the function of Gsk3b during embryonic angiogenesis remains unclear. Here, either gsk3b knockdown by morpholino or Gsk3b loss of activity by LiCl treatment had serious phenotypic consequences, such as defects in the positioning and patterning of intersegmental blood vessels and reduction of vegfaa121 and vegfaa165 transcripts. In embryos treated with the phosphatidylinositol 3‐kinase inhibitor, angiogenesis was severely inhibited, along with reduced Wnt, phosphorylated AKT and phosphorylated Gsk3b, suggesting that the remaining Gsk3b in somites could still degrade β–catenin, resulting in decreased vascular endothelial growth factor Aa(VegfAa) expression. However, in gsk3b‐mRNA‐overexpressed embryos, intersegmental vessels ectopically sprouted by the increase in phosphorylated‐Gsk3b which prevented the degradation of β–catenin and promoted the increase in phosphorylated AKT activity, thus increasing VegfAa expression in somites. Interestingly, the Gsk3b‐dependent cross‐talk between PI3K/AKT and Wnt/β–catenin suggests that Wnt/β–catenin and PI3K/AKT interaction controls embryonic angiogenesis by a positive feedback loop rather than a hierarchical framework such as that found in cancer‐induced angiogenesis. Thus, both active and inactive forms of Gsk3b mediate the cooperative signaling between Wnt/β–catenin and PI3K/AKT to control VegfAa expression in somites during angiogenesis in zebrafish embryos.</description><identifier>ISSN: 1742-464X</identifier><identifier>EISSN: 1742-4658</identifier><identifier>DOI: 10.1111/febs.12942</identifier><identifier>PMID: 25056693</identifier><language>eng</language><publisher>England: Blackwell</publisher><subject>Angiogenesis ; Animals ; blood vessels ; Cellular biology ; Cleavage Stage, Ovum - enzymology ; Danio rerio ; Embryo, Nonmammalian - blood supply ; Embryo, Nonmammalian - enzymology ; Embryos ; endothelial cells ; Endothelium, Vascular - enzymology ; Gene Expression Regulation, Developmental ; Glycogen Synthase Kinase 3 - physiology ; Glycogen Synthase Kinase 3 beta ; glycogen synthase kinases ; Gsk3b ; Kinases ; lithium chloride ; Neovascularization, Physiologic ; phosphatidylinositol 3-kinase ; Phosphatidylinositol 3-Kinases - metabolism ; phosphatidylinositols ; Proto-Oncogene Proteins c-akt - metabolism ; Signal Transduction ; somite ; Somites - enzymology ; vascular endothelial growth factor ; Vascular Endothelial Growth Factor A - metabolism ; Vascular Endothelial Growth Factor A - secretion ; vascular endothelial growth factors ; Wnt Proteins - metabolism ; Zebrafish ; Zebrafish Proteins - physiology</subject><ispartof>The FEBS journal, 2014-10, Vol.281 (19), p.4367-4383</ispartof><rights>2014 FEBS</rights><rights>2014 FEBS.</rights><rights>Copyright © 2014 Federation of European Biochemical Societies</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4872-39b024753b3fd7f1afc2f6566b36d72c7e61eae34cfa45fa8c1807e8553b9ace3</citedby><cites>FETCH-LOGICAL-c4872-39b024753b3fd7f1afc2f6566b36d72c7e61eae34cfa45fa8c1807e8553b9ace3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Ffebs.12942$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Ffebs.12942$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,1432,27922,27923,45572,45573,46407,46831</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25056693$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Hung‐Chieh</creatorcontrib><creatorcontrib>Lin, Yi‐Zhen</creatorcontrib><creatorcontrib>Lai, Yen‐Ting</creatorcontrib><creatorcontrib>Huang, Wei‐Jhen</creatorcontrib><creatorcontrib>Hu, Jia‐Rung</creatorcontrib><creatorcontrib>Tsai, Jen‐Ning</creatorcontrib><creatorcontrib>Tsai, Huai‐Jen</creatorcontrib><title>Glycogen synthase kinase 3 beta in somites plays a role during the angiogenesis of zebrafish embryos</title><title>The FEBS journal</title><addtitle>FEBS J</addtitle><description>Glycogen synthase kinase 3 beta (Gsk3b) acts as a negative modulator in endothelial cells through the Wnt/β–catenin/PI3K/AKT/Gsk3b axis in cancer‐induced angiogenesis. However, the function of Gsk3b during embryonic angiogenesis remains unclear. Here, either gsk3b knockdown by morpholino or Gsk3b loss of activity by LiCl treatment had serious phenotypic consequences, such as defects in the positioning and patterning of intersegmental blood vessels and reduction of vegfaa121 and vegfaa165 transcripts. In embryos treated with the phosphatidylinositol 3‐kinase inhibitor, angiogenesis was severely inhibited, along with reduced Wnt, phosphorylated AKT and phosphorylated Gsk3b, suggesting that the remaining Gsk3b in somites could still degrade β–catenin, resulting in decreased vascular endothelial growth factor Aa(VegfAa) expression. However, in gsk3b‐mRNA‐overexpressed embryos, intersegmental vessels ectopically sprouted by the increase in phosphorylated‐Gsk3b which prevented the degradation of β–catenin and promoted the increase in phosphorylated AKT activity, thus increasing VegfAa expression in somites. Interestingly, the Gsk3b‐dependent cross‐talk between PI3K/AKT and Wnt/β–catenin suggests that Wnt/β–catenin and PI3K/AKT interaction controls embryonic angiogenesis by a positive feedback loop rather than a hierarchical framework such as that found in cancer‐induced angiogenesis. Thus, both active and inactive forms of Gsk3b mediate the cooperative signaling between Wnt/β–catenin and PI3K/AKT to control VegfAa expression in somites during angiogenesis in zebrafish embryos.</description><subject>Angiogenesis</subject><subject>Animals</subject><subject>blood vessels</subject><subject>Cellular biology</subject><subject>Cleavage Stage, Ovum - enzymology</subject><subject>Danio rerio</subject><subject>Embryo, Nonmammalian - blood supply</subject><subject>Embryo, Nonmammalian - enzymology</subject><subject>Embryos</subject><subject>endothelial cells</subject><subject>Endothelium, Vascular - enzymology</subject><subject>Gene Expression Regulation, Developmental</subject><subject>Glycogen Synthase Kinase 3 - physiology</subject><subject>Glycogen Synthase Kinase 3 beta</subject><subject>glycogen synthase kinases</subject><subject>Gsk3b</subject><subject>Kinases</subject><subject>lithium chloride</subject><subject>Neovascularization, Physiologic</subject><subject>phosphatidylinositol 3-kinase</subject><subject>Phosphatidylinositol 3-Kinases - metabolism</subject><subject>phosphatidylinositols</subject><subject>Proto-Oncogene Proteins c-akt - metabolism</subject><subject>Signal Transduction</subject><subject>somite</subject><subject>Somites - enzymology</subject><subject>vascular endothelial growth factor</subject><subject>Vascular Endothelial Growth Factor A - metabolism</subject><subject>Vascular Endothelial Growth Factor A - secretion</subject><subject>vascular endothelial growth factors</subject><subject>Wnt Proteins - metabolism</subject><subject>Zebrafish</subject><subject>Zebrafish Proteins - physiology</subject><issn>1742-464X</issn><issn>1742-4658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1v1DAQhi0EoqVw4QeAJS4IaYu_kxxL1RakShxKJW6W44x3XZJ48SRC4dfjsG0PHJjLWPIzj2ZeQl5zdspLfQzQ4ikXjRJPyDGvlNgoo-unj2_1_Yi8QLxjTGrVNM_JkdBMG9PIY9Jd9YtPWxgpLuO0cwj0RxzXJmkLk6Ox_KQhToB037sFqaM59UC7OcdxS6cdUDdu46oAjEhToL-hzS5E3FEY2rwkfEmeBdcjvLrvJ-T28uLb-efN9derL-dn1xuv6kpsZNMyoSotWxm6KnAXvAimLNpK01XCV2A4OJDKB6d0cLXnNaug1mWicR7kCXl_8O5z-jkDTnaI6KHv3QhpRsu1qZgWhuuCvvsHvUtzHst2K2UMl7oxhfpwoHxOiBmC3ec4uLxYzuyavV2zt3-zL_Cbe-XcDtA9og9hF4AfgF-xh-U_Knt58enmQfr2MBNcsm6bI9rbG8G4YaV0uUf-AfitmCw</recordid><startdate>201410</startdate><enddate>201410</enddate><creator>Lee, Hung‐Chieh</creator><creator>Lin, Yi‐Zhen</creator><creator>Lai, Yen‐Ting</creator><creator>Huang, Wei‐Jhen</creator><creator>Hu, Jia‐Rung</creator><creator>Tsai, Jen‐Ning</creator><creator>Tsai, Huai‐Jen</creator><general>Blackwell</general><general>Blackwell Publishing Ltd</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>201410</creationdate><title>Glycogen synthase kinase 3 beta in somites plays a role during the angiogenesis of zebrafish embryos</title><author>Lee, Hung‐Chieh ; Lin, Yi‐Zhen ; Lai, Yen‐Ting ; Huang, Wei‐Jhen ; Hu, Jia‐Rung ; Tsai, Jen‐Ning ; Tsai, Huai‐Jen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4872-39b024753b3fd7f1afc2f6566b36d72c7e61eae34cfa45fa8c1807e8553b9ace3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Angiogenesis</topic><topic>Animals</topic><topic>blood vessels</topic><topic>Cellular biology</topic><topic>Cleavage Stage, Ovum - enzymology</topic><topic>Danio rerio</topic><topic>Embryo, Nonmammalian - blood supply</topic><topic>Embryo, Nonmammalian - enzymology</topic><topic>Embryos</topic><topic>endothelial cells</topic><topic>Endothelium, Vascular - enzymology</topic><topic>Gene Expression Regulation, Developmental</topic><topic>Glycogen Synthase Kinase 3 - physiology</topic><topic>Glycogen Synthase Kinase 3 beta</topic><topic>glycogen synthase kinases</topic><topic>Gsk3b</topic><topic>Kinases</topic><topic>lithium chloride</topic><topic>Neovascularization, Physiologic</topic><topic>phosphatidylinositol 3-kinase</topic><topic>Phosphatidylinositol 3-Kinases - metabolism</topic><topic>phosphatidylinositols</topic><topic>Proto-Oncogene Proteins c-akt - metabolism</topic><topic>Signal Transduction</topic><topic>somite</topic><topic>Somites - enzymology</topic><topic>vascular endothelial growth factor</topic><topic>Vascular Endothelial Growth Factor A - metabolism</topic><topic>Vascular Endothelial Growth Factor A - secretion</topic><topic>vascular endothelial growth factors</topic><topic>Wnt Proteins - metabolism</topic><topic>Zebrafish</topic><topic>Zebrafish Proteins - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Hung‐Chieh</creatorcontrib><creatorcontrib>Lin, Yi‐Zhen</creatorcontrib><creatorcontrib>Lai, Yen‐Ting</creatorcontrib><creatorcontrib>Huang, Wei‐Jhen</creatorcontrib><creatorcontrib>Hu, Jia‐Rung</creatorcontrib><creatorcontrib>Tsai, Jen‐Ning</creatorcontrib><creatorcontrib>Tsai, Huai‐Jen</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The FEBS journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Hung‐Chieh</au><au>Lin, Yi‐Zhen</au><au>Lai, Yen‐Ting</au><au>Huang, Wei‐Jhen</au><au>Hu, Jia‐Rung</au><au>Tsai, Jen‐Ning</au><au>Tsai, Huai‐Jen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Glycogen synthase kinase 3 beta in somites plays a role during the angiogenesis of zebrafish embryos</atitle><jtitle>The FEBS journal</jtitle><addtitle>FEBS J</addtitle><date>2014-10</date><risdate>2014</risdate><volume>281</volume><issue>19</issue><spage>4367</spage><epage>4383</epage><pages>4367-4383</pages><issn>1742-464X</issn><eissn>1742-4658</eissn><abstract>Glycogen synthase kinase 3 beta (Gsk3b) acts as a negative modulator in endothelial cells through the Wnt/β–catenin/PI3K/AKT/Gsk3b axis in cancer‐induced angiogenesis. However, the function of Gsk3b during embryonic angiogenesis remains unclear. Here, either gsk3b knockdown by morpholino or Gsk3b loss of activity by LiCl treatment had serious phenotypic consequences, such as defects in the positioning and patterning of intersegmental blood vessels and reduction of vegfaa121 and vegfaa165 transcripts. In embryos treated with the phosphatidylinositol 3‐kinase inhibitor, angiogenesis was severely inhibited, along with reduced Wnt, phosphorylated AKT and phosphorylated Gsk3b, suggesting that the remaining Gsk3b in somites could still degrade β–catenin, resulting in decreased vascular endothelial growth factor Aa(VegfAa) expression. However, in gsk3b‐mRNA‐overexpressed embryos, intersegmental vessels ectopically sprouted by the increase in phosphorylated‐Gsk3b which prevented the degradation of β–catenin and promoted the increase in phosphorylated AKT activity, thus increasing VegfAa expression in somites. Interestingly, the Gsk3b‐dependent cross‐talk between PI3K/AKT and Wnt/β–catenin suggests that Wnt/β–catenin and PI3K/AKT interaction controls embryonic angiogenesis by a positive feedback loop rather than a hierarchical framework such as that found in cancer‐induced angiogenesis. Thus, both active and inactive forms of Gsk3b mediate the cooperative signaling between Wnt/β–catenin and PI3K/AKT to control VegfAa expression in somites during angiogenesis in zebrafish embryos.</abstract><cop>England</cop><pub>Blackwell</pub><pmid>25056693</pmid><doi>10.1111/febs.12942</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-464X
ispartof The FEBS journal, 2014-10, Vol.281 (19), p.4367-4383
issn 1742-464X
1742-4658
language eng
recordid cdi_proquest_miscellaneous_1567052615
source MEDLINE; Wiley Free Content; IngentaConnect Free/Open Access Journals; Wiley Online Library All Journals; Free Full-Text Journals in Chemistry
subjects Angiogenesis
Animals
blood vessels
Cellular biology
Cleavage Stage, Ovum - enzymology
Danio rerio
Embryo, Nonmammalian - blood supply
Embryo, Nonmammalian - enzymology
Embryos
endothelial cells
Endothelium, Vascular - enzymology
Gene Expression Regulation, Developmental
Glycogen Synthase Kinase 3 - physiology
Glycogen Synthase Kinase 3 beta
glycogen synthase kinases
Gsk3b
Kinases
lithium chloride
Neovascularization, Physiologic
phosphatidylinositol 3-kinase
Phosphatidylinositol 3-Kinases - metabolism
phosphatidylinositols
Proto-Oncogene Proteins c-akt - metabolism
Signal Transduction
somite
Somites - enzymology
vascular endothelial growth factor
Vascular Endothelial Growth Factor A - metabolism
Vascular Endothelial Growth Factor A - secretion
vascular endothelial growth factors
Wnt Proteins - metabolism
Zebrafish
Zebrafish Proteins - physiology
title Glycogen synthase kinase 3 beta in somites plays a role during the angiogenesis of zebrafish embryos
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T19%3A49%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Glycogen%20synthase%20kinase%203%20beta%20in%20somites%20plays%20a%20role%20during%20the%20angiogenesis%20of%20zebrafish%20embryos&rft.jtitle=The%20FEBS%20journal&rft.au=Lee,%20Hung%E2%80%90Chieh&rft.date=2014-10&rft.volume=281&rft.issue=19&rft.spage=4367&rft.epage=4383&rft.pages=4367-4383&rft.issn=1742-464X&rft.eissn=1742-4658&rft_id=info:doi/10.1111/febs.12942&rft_dat=%3Cproquest_cross%3E3447985281%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1566613596&rft_id=info:pmid/25056693&rfr_iscdi=true