Glycogen synthase kinase 3 beta in somites plays a role during the angiogenesis of zebrafish embryos
Glycogen synthase kinase 3 beta (Gsk3b) acts as a negative modulator in endothelial cells through the Wnt/β–catenin/PI3K/AKT/Gsk3b axis in cancer‐induced angiogenesis. However, the function of Gsk3b during embryonic angiogenesis remains unclear. Here, either gsk3b knockdown by morpholino or Gsk3b lo...
Gespeichert in:
Veröffentlicht in: | The FEBS journal 2014-10, Vol.281 (19), p.4367-4383 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4383 |
---|---|
container_issue | 19 |
container_start_page | 4367 |
container_title | The FEBS journal |
container_volume | 281 |
creator | Lee, Hung‐Chieh Lin, Yi‐Zhen Lai, Yen‐Ting Huang, Wei‐Jhen Hu, Jia‐Rung Tsai, Jen‐Ning Tsai, Huai‐Jen |
description | Glycogen synthase kinase 3 beta (Gsk3b) acts as a negative modulator in endothelial cells through the Wnt/β–catenin/PI3K/AKT/Gsk3b axis in cancer‐induced angiogenesis. However, the function of Gsk3b during embryonic angiogenesis remains unclear. Here, either gsk3b knockdown by morpholino or Gsk3b loss of activity by LiCl treatment had serious phenotypic consequences, such as defects in the positioning and patterning of intersegmental blood vessels and reduction of vegfaa121 and vegfaa165 transcripts. In embryos treated with the phosphatidylinositol 3‐kinase inhibitor, angiogenesis was severely inhibited, along with reduced Wnt, phosphorylated AKT and phosphorylated Gsk3b, suggesting that the remaining Gsk3b in somites could still degrade β–catenin, resulting in decreased vascular endothelial growth factor Aa(VegfAa) expression. However, in gsk3b‐mRNA‐overexpressed embryos, intersegmental vessels ectopically sprouted by the increase in phosphorylated‐Gsk3b which prevented the degradation of β–catenin and promoted the increase in phosphorylated AKT activity, thus increasing VegfAa expression in somites. Interestingly, the Gsk3b‐dependent cross‐talk between PI3K/AKT and Wnt/β–catenin suggests that Wnt/β–catenin and PI3K/AKT interaction controls embryonic angiogenesis by a positive feedback loop rather than a hierarchical framework such as that found in cancer‐induced angiogenesis. Thus, both active and inactive forms of Gsk3b mediate the cooperative signaling between Wnt/β–catenin and PI3K/AKT to control VegfAa expression in somites during angiogenesis in zebrafish embryos. |
doi_str_mv | 10.1111/febs.12942 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1567052615</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3447985281</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4872-39b024753b3fd7f1afc2f6566b36d72c7e61eae34cfa45fa8c1807e8553b9ace3</originalsourceid><addsrcrecordid>eNp9kE1v1DAQhi0EoqVw4QeAJS4IaYu_kxxL1RakShxKJW6W44x3XZJ48SRC4dfjsG0PHJjLWPIzj2ZeQl5zdspLfQzQ4ikXjRJPyDGvlNgoo-unj2_1_Yi8QLxjTGrVNM_JkdBMG9PIY9Jd9YtPWxgpLuO0cwj0RxzXJmkLk6Ox_KQhToB037sFqaM59UC7OcdxS6cdUDdu46oAjEhToL-hzS5E3FEY2rwkfEmeBdcjvLrvJ-T28uLb-efN9derL-dn1xuv6kpsZNMyoSotWxm6KnAXvAimLNpK01XCV2A4OJDKB6d0cLXnNaug1mWicR7kCXl_8O5z-jkDTnaI6KHv3QhpRsu1qZgWhuuCvvsHvUtzHst2K2UMl7oxhfpwoHxOiBmC3ec4uLxYzuyavV2zt3-zL_Cbe-XcDtA9og9hF4AfgF-xh-U_Knt58enmQfr2MBNcsm6bI9rbG8G4YaV0uUf-AfitmCw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1566613596</pqid></control><display><type>article</type><title>Glycogen synthase kinase 3 beta in somites plays a role during the angiogenesis of zebrafish embryos</title><source>MEDLINE</source><source>Wiley Free Content</source><source>IngentaConnect Free/Open Access Journals</source><source>Wiley Online Library All Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Lee, Hung‐Chieh ; Lin, Yi‐Zhen ; Lai, Yen‐Ting ; Huang, Wei‐Jhen ; Hu, Jia‐Rung ; Tsai, Jen‐Ning ; Tsai, Huai‐Jen</creator><creatorcontrib>Lee, Hung‐Chieh ; Lin, Yi‐Zhen ; Lai, Yen‐Ting ; Huang, Wei‐Jhen ; Hu, Jia‐Rung ; Tsai, Jen‐Ning ; Tsai, Huai‐Jen</creatorcontrib><description>Glycogen synthase kinase 3 beta (Gsk3b) acts as a negative modulator in endothelial cells through the Wnt/β–catenin/PI3K/AKT/Gsk3b axis in cancer‐induced angiogenesis. However, the function of Gsk3b during embryonic angiogenesis remains unclear. Here, either gsk3b knockdown by morpholino or Gsk3b loss of activity by LiCl treatment had serious phenotypic consequences, such as defects in the positioning and patterning of intersegmental blood vessels and reduction of vegfaa121 and vegfaa165 transcripts. In embryos treated with the phosphatidylinositol 3‐kinase inhibitor, angiogenesis was severely inhibited, along with reduced Wnt, phosphorylated AKT and phosphorylated Gsk3b, suggesting that the remaining Gsk3b in somites could still degrade β–catenin, resulting in decreased vascular endothelial growth factor Aa(VegfAa) expression. However, in gsk3b‐mRNA‐overexpressed embryos, intersegmental vessels ectopically sprouted by the increase in phosphorylated‐Gsk3b which prevented the degradation of β–catenin and promoted the increase in phosphorylated AKT activity, thus increasing VegfAa expression in somites. Interestingly, the Gsk3b‐dependent cross‐talk between PI3K/AKT and Wnt/β–catenin suggests that Wnt/β–catenin and PI3K/AKT interaction controls embryonic angiogenesis by a positive feedback loop rather than a hierarchical framework such as that found in cancer‐induced angiogenesis. Thus, both active and inactive forms of Gsk3b mediate the cooperative signaling between Wnt/β–catenin and PI3K/AKT to control VegfAa expression in somites during angiogenesis in zebrafish embryos.</description><identifier>ISSN: 1742-464X</identifier><identifier>EISSN: 1742-4658</identifier><identifier>DOI: 10.1111/febs.12942</identifier><identifier>PMID: 25056693</identifier><language>eng</language><publisher>England: Blackwell</publisher><subject>Angiogenesis ; Animals ; blood vessels ; Cellular biology ; Cleavage Stage, Ovum - enzymology ; Danio rerio ; Embryo, Nonmammalian - blood supply ; Embryo, Nonmammalian - enzymology ; Embryos ; endothelial cells ; Endothelium, Vascular - enzymology ; Gene Expression Regulation, Developmental ; Glycogen Synthase Kinase 3 - physiology ; Glycogen Synthase Kinase 3 beta ; glycogen synthase kinases ; Gsk3b ; Kinases ; lithium chloride ; Neovascularization, Physiologic ; phosphatidylinositol 3-kinase ; Phosphatidylinositol 3-Kinases - metabolism ; phosphatidylinositols ; Proto-Oncogene Proteins c-akt - metabolism ; Signal Transduction ; somite ; Somites - enzymology ; vascular endothelial growth factor ; Vascular Endothelial Growth Factor A - metabolism ; Vascular Endothelial Growth Factor A - secretion ; vascular endothelial growth factors ; Wnt Proteins - metabolism ; Zebrafish ; Zebrafish Proteins - physiology</subject><ispartof>The FEBS journal, 2014-10, Vol.281 (19), p.4367-4383</ispartof><rights>2014 FEBS</rights><rights>2014 FEBS.</rights><rights>Copyright © 2014 Federation of European Biochemical Societies</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4872-39b024753b3fd7f1afc2f6566b36d72c7e61eae34cfa45fa8c1807e8553b9ace3</citedby><cites>FETCH-LOGICAL-c4872-39b024753b3fd7f1afc2f6566b36d72c7e61eae34cfa45fa8c1807e8553b9ace3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Ffebs.12942$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Ffebs.12942$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,1432,27922,27923,45572,45573,46407,46831</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25056693$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Hung‐Chieh</creatorcontrib><creatorcontrib>Lin, Yi‐Zhen</creatorcontrib><creatorcontrib>Lai, Yen‐Ting</creatorcontrib><creatorcontrib>Huang, Wei‐Jhen</creatorcontrib><creatorcontrib>Hu, Jia‐Rung</creatorcontrib><creatorcontrib>Tsai, Jen‐Ning</creatorcontrib><creatorcontrib>Tsai, Huai‐Jen</creatorcontrib><title>Glycogen synthase kinase 3 beta in somites plays a role during the angiogenesis of zebrafish embryos</title><title>The FEBS journal</title><addtitle>FEBS J</addtitle><description>Glycogen synthase kinase 3 beta (Gsk3b) acts as a negative modulator in endothelial cells through the Wnt/β–catenin/PI3K/AKT/Gsk3b axis in cancer‐induced angiogenesis. However, the function of Gsk3b during embryonic angiogenesis remains unclear. Here, either gsk3b knockdown by morpholino or Gsk3b loss of activity by LiCl treatment had serious phenotypic consequences, such as defects in the positioning and patterning of intersegmental blood vessels and reduction of vegfaa121 and vegfaa165 transcripts. In embryos treated with the phosphatidylinositol 3‐kinase inhibitor, angiogenesis was severely inhibited, along with reduced Wnt, phosphorylated AKT and phosphorylated Gsk3b, suggesting that the remaining Gsk3b in somites could still degrade β–catenin, resulting in decreased vascular endothelial growth factor Aa(VegfAa) expression. However, in gsk3b‐mRNA‐overexpressed embryos, intersegmental vessels ectopically sprouted by the increase in phosphorylated‐Gsk3b which prevented the degradation of β–catenin and promoted the increase in phosphorylated AKT activity, thus increasing VegfAa expression in somites. Interestingly, the Gsk3b‐dependent cross‐talk between PI3K/AKT and Wnt/β–catenin suggests that Wnt/β–catenin and PI3K/AKT interaction controls embryonic angiogenesis by a positive feedback loop rather than a hierarchical framework such as that found in cancer‐induced angiogenesis. Thus, both active and inactive forms of Gsk3b mediate the cooperative signaling between Wnt/β–catenin and PI3K/AKT to control VegfAa expression in somites during angiogenesis in zebrafish embryos.</description><subject>Angiogenesis</subject><subject>Animals</subject><subject>blood vessels</subject><subject>Cellular biology</subject><subject>Cleavage Stage, Ovum - enzymology</subject><subject>Danio rerio</subject><subject>Embryo, Nonmammalian - blood supply</subject><subject>Embryo, Nonmammalian - enzymology</subject><subject>Embryos</subject><subject>endothelial cells</subject><subject>Endothelium, Vascular - enzymology</subject><subject>Gene Expression Regulation, Developmental</subject><subject>Glycogen Synthase Kinase 3 - physiology</subject><subject>Glycogen Synthase Kinase 3 beta</subject><subject>glycogen synthase kinases</subject><subject>Gsk3b</subject><subject>Kinases</subject><subject>lithium chloride</subject><subject>Neovascularization, Physiologic</subject><subject>phosphatidylinositol 3-kinase</subject><subject>Phosphatidylinositol 3-Kinases - metabolism</subject><subject>phosphatidylinositols</subject><subject>Proto-Oncogene Proteins c-akt - metabolism</subject><subject>Signal Transduction</subject><subject>somite</subject><subject>Somites - enzymology</subject><subject>vascular endothelial growth factor</subject><subject>Vascular Endothelial Growth Factor A - metabolism</subject><subject>Vascular Endothelial Growth Factor A - secretion</subject><subject>vascular endothelial growth factors</subject><subject>Wnt Proteins - metabolism</subject><subject>Zebrafish</subject><subject>Zebrafish Proteins - physiology</subject><issn>1742-464X</issn><issn>1742-4658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1v1DAQhi0EoqVw4QeAJS4IaYu_kxxL1RakShxKJW6W44x3XZJ48SRC4dfjsG0PHJjLWPIzj2ZeQl5zdspLfQzQ4ikXjRJPyDGvlNgoo-unj2_1_Yi8QLxjTGrVNM_JkdBMG9PIY9Jd9YtPWxgpLuO0cwj0RxzXJmkLk6Ox_KQhToB037sFqaM59UC7OcdxS6cdUDdu46oAjEhToL-hzS5E3FEY2rwkfEmeBdcjvLrvJ-T28uLb-efN9derL-dn1xuv6kpsZNMyoSotWxm6KnAXvAimLNpK01XCV2A4OJDKB6d0cLXnNaug1mWicR7kCXl_8O5z-jkDTnaI6KHv3QhpRsu1qZgWhuuCvvsHvUtzHst2K2UMl7oxhfpwoHxOiBmC3ec4uLxYzuyavV2zt3-zL_Cbe-XcDtA9og9hF4AfgF-xh-U_Knt58enmQfr2MBNcsm6bI9rbG8G4YaV0uUf-AfitmCw</recordid><startdate>201410</startdate><enddate>201410</enddate><creator>Lee, Hung‐Chieh</creator><creator>Lin, Yi‐Zhen</creator><creator>Lai, Yen‐Ting</creator><creator>Huang, Wei‐Jhen</creator><creator>Hu, Jia‐Rung</creator><creator>Tsai, Jen‐Ning</creator><creator>Tsai, Huai‐Jen</creator><general>Blackwell</general><general>Blackwell Publishing Ltd</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>201410</creationdate><title>Glycogen synthase kinase 3 beta in somites plays a role during the angiogenesis of zebrafish embryos</title><author>Lee, Hung‐Chieh ; Lin, Yi‐Zhen ; Lai, Yen‐Ting ; Huang, Wei‐Jhen ; Hu, Jia‐Rung ; Tsai, Jen‐Ning ; Tsai, Huai‐Jen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4872-39b024753b3fd7f1afc2f6566b36d72c7e61eae34cfa45fa8c1807e8553b9ace3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Angiogenesis</topic><topic>Animals</topic><topic>blood vessels</topic><topic>Cellular biology</topic><topic>Cleavage Stage, Ovum - enzymology</topic><topic>Danio rerio</topic><topic>Embryo, Nonmammalian - blood supply</topic><topic>Embryo, Nonmammalian - enzymology</topic><topic>Embryos</topic><topic>endothelial cells</topic><topic>Endothelium, Vascular - enzymology</topic><topic>Gene Expression Regulation, Developmental</topic><topic>Glycogen Synthase Kinase 3 - physiology</topic><topic>Glycogen Synthase Kinase 3 beta</topic><topic>glycogen synthase kinases</topic><topic>Gsk3b</topic><topic>Kinases</topic><topic>lithium chloride</topic><topic>Neovascularization, Physiologic</topic><topic>phosphatidylinositol 3-kinase</topic><topic>Phosphatidylinositol 3-Kinases - metabolism</topic><topic>phosphatidylinositols</topic><topic>Proto-Oncogene Proteins c-akt - metabolism</topic><topic>Signal Transduction</topic><topic>somite</topic><topic>Somites - enzymology</topic><topic>vascular endothelial growth factor</topic><topic>Vascular Endothelial Growth Factor A - metabolism</topic><topic>Vascular Endothelial Growth Factor A - secretion</topic><topic>vascular endothelial growth factors</topic><topic>Wnt Proteins - metabolism</topic><topic>Zebrafish</topic><topic>Zebrafish Proteins - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Hung‐Chieh</creatorcontrib><creatorcontrib>Lin, Yi‐Zhen</creatorcontrib><creatorcontrib>Lai, Yen‐Ting</creatorcontrib><creatorcontrib>Huang, Wei‐Jhen</creatorcontrib><creatorcontrib>Hu, Jia‐Rung</creatorcontrib><creatorcontrib>Tsai, Jen‐Ning</creatorcontrib><creatorcontrib>Tsai, Huai‐Jen</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The FEBS journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Hung‐Chieh</au><au>Lin, Yi‐Zhen</au><au>Lai, Yen‐Ting</au><au>Huang, Wei‐Jhen</au><au>Hu, Jia‐Rung</au><au>Tsai, Jen‐Ning</au><au>Tsai, Huai‐Jen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Glycogen synthase kinase 3 beta in somites plays a role during the angiogenesis of zebrafish embryos</atitle><jtitle>The FEBS journal</jtitle><addtitle>FEBS J</addtitle><date>2014-10</date><risdate>2014</risdate><volume>281</volume><issue>19</issue><spage>4367</spage><epage>4383</epage><pages>4367-4383</pages><issn>1742-464X</issn><eissn>1742-4658</eissn><abstract>Glycogen synthase kinase 3 beta (Gsk3b) acts as a negative modulator in endothelial cells through the Wnt/β–catenin/PI3K/AKT/Gsk3b axis in cancer‐induced angiogenesis. However, the function of Gsk3b during embryonic angiogenesis remains unclear. Here, either gsk3b knockdown by morpholino or Gsk3b loss of activity by LiCl treatment had serious phenotypic consequences, such as defects in the positioning and patterning of intersegmental blood vessels and reduction of vegfaa121 and vegfaa165 transcripts. In embryos treated with the phosphatidylinositol 3‐kinase inhibitor, angiogenesis was severely inhibited, along with reduced Wnt, phosphorylated AKT and phosphorylated Gsk3b, suggesting that the remaining Gsk3b in somites could still degrade β–catenin, resulting in decreased vascular endothelial growth factor Aa(VegfAa) expression. However, in gsk3b‐mRNA‐overexpressed embryos, intersegmental vessels ectopically sprouted by the increase in phosphorylated‐Gsk3b which prevented the degradation of β–catenin and promoted the increase in phosphorylated AKT activity, thus increasing VegfAa expression in somites. Interestingly, the Gsk3b‐dependent cross‐talk between PI3K/AKT and Wnt/β–catenin suggests that Wnt/β–catenin and PI3K/AKT interaction controls embryonic angiogenesis by a positive feedback loop rather than a hierarchical framework such as that found in cancer‐induced angiogenesis. Thus, both active and inactive forms of Gsk3b mediate the cooperative signaling between Wnt/β–catenin and PI3K/AKT to control VegfAa expression in somites during angiogenesis in zebrafish embryos.</abstract><cop>England</cop><pub>Blackwell</pub><pmid>25056693</pmid><doi>10.1111/febs.12942</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-464X |
ispartof | The FEBS journal, 2014-10, Vol.281 (19), p.4367-4383 |
issn | 1742-464X 1742-4658 |
language | eng |
recordid | cdi_proquest_miscellaneous_1567052615 |
source | MEDLINE; Wiley Free Content; IngentaConnect Free/Open Access Journals; Wiley Online Library All Journals; Free Full-Text Journals in Chemistry |
subjects | Angiogenesis Animals blood vessels Cellular biology Cleavage Stage, Ovum - enzymology Danio rerio Embryo, Nonmammalian - blood supply Embryo, Nonmammalian - enzymology Embryos endothelial cells Endothelium, Vascular - enzymology Gene Expression Regulation, Developmental Glycogen Synthase Kinase 3 - physiology Glycogen Synthase Kinase 3 beta glycogen synthase kinases Gsk3b Kinases lithium chloride Neovascularization, Physiologic phosphatidylinositol 3-kinase Phosphatidylinositol 3-Kinases - metabolism phosphatidylinositols Proto-Oncogene Proteins c-akt - metabolism Signal Transduction somite Somites - enzymology vascular endothelial growth factor Vascular Endothelial Growth Factor A - metabolism Vascular Endothelial Growth Factor A - secretion vascular endothelial growth factors Wnt Proteins - metabolism Zebrafish Zebrafish Proteins - physiology |
title | Glycogen synthase kinase 3 beta in somites plays a role during the angiogenesis of zebrafish embryos |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T19%3A49%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Glycogen%20synthase%20kinase%203%20beta%20in%20somites%20plays%20a%20role%20during%20the%20angiogenesis%20of%20zebrafish%20embryos&rft.jtitle=The%20FEBS%20journal&rft.au=Lee,%20Hung%E2%80%90Chieh&rft.date=2014-10&rft.volume=281&rft.issue=19&rft.spage=4367&rft.epage=4383&rft.pages=4367-4383&rft.issn=1742-464X&rft.eissn=1742-4658&rft_id=info:doi/10.1111/febs.12942&rft_dat=%3Cproquest_cross%3E3447985281%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1566613596&rft_id=info:pmid/25056693&rfr_iscdi=true |