Transgenic Arabidopsis expressing osmolyte glycine betaine synthesizing enzymes from halophilic methanogen promote tolerance to drought and salt stress

Glycine betaine (betaine) has the highest cellular osmoprotective efficiency which does not accumulate in most glycophytes. The biosynthetic pathway for betaine in higher plants is derived from the oxidation of low-accumulating metabolite choline that limiting the ability of most plants to produce b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant molecular biology 2014-07, Vol.85 (4-5), p.429-441
Hauptverfasser: Lai, Shu-Jung, Lai, Mei-Chin, Lee, Ren-Jye, Chen, Yu-Hsuan, Yen, Hungchen Emilie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 441
container_issue 4-5
container_start_page 429
container_title Plant molecular biology
container_volume 85
creator Lai, Shu-Jung
Lai, Mei-Chin
Lee, Ren-Jye
Chen, Yu-Hsuan
Yen, Hungchen Emilie
description Glycine betaine (betaine) has the highest cellular osmoprotective efficiency which does not accumulate in most glycophytes. The biosynthetic pathway for betaine in higher plants is derived from the oxidation of low-accumulating metabolite choline that limiting the ability of most plants to produce betaine. Halophilic methanoarchaeon Methanohalophilus portucalensis FDF1ᵀ is a model anaerobic methanogen to study the acclimation of water-deficit stresses which de novo synthesize betaine by the stepwise methylation of glycine, catalyzed by glycine sarcosine N-methyltransferase (GSMT) and sarcosine dimethylglycine N-methyltransferase. In this report, genes encoding these betaine biosynthesizing enzymes, Mpgsmt and Mpsdmt, were introduced into Arabidopsis. The homozygous Mpgsmt (G), Mpsdmt (S), and their cross, Mpgsmt and Mpsdmt (G × S) plants showed increased accumulation of betaine. Water loss from detached leaves was slower in G, S, and G × S lines than wild-type (WT). Pot-grown transgenic plants showed better growth than WT after 9 days of withholding water or irrigating with 300 mM NaCl. G, S, G × S lines also maintained higher relative water content and photosystem II activity than WT under salt stress. This suggests heterologously expressed Mpgsmt and Mpsdmt could enhance tolerance to drought and salt stress in Arabidopsis. We also found a twofold increase in quaternary ammonium compounds in salt-stressed leaves of G lines, presumably due to the activation of GSMT activity by high salinity. This study demonstrates that introducing stress-activated enzymes is a way of avoiding the divergence of primary metabolites under normal growing conditions, while also providing protection in stressful environments.
doi_str_mv 10.1007/s11103-014-0195-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1566859594</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1535206660</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-cf764a307510db1ab2ebd8935e5c0e4c15fd398efeeef9c6e81145d04a2553933</originalsourceid><addsrcrecordid>eNqNks2K1zAUxYsozt_RB3CjATduqknz0XY5DH7BgAtn1iFtb9sMbVJzU5jOi_i6pnQUcSEuQgL3d85JOMmyl4y-Y5SW75ExRnlOmUirlnn1KDsxWfJc0qJ6nJ0oU2UuBCvOsmeIt5QmFVdPs7NCVJQLRk_Zj-tgHA7gbEsugmls5xe0SOBuCYBo3UA8zn7aIpBh2lrrgDQQzb7j5uIIaO93Ctz9NgOSPviZjGbyy2inZDpDHI3zKYEsaeSTT_QTpNR2P5Eu-HUYIzGuI2imSDDuwc-zJ72ZEF487OfZzccP15ef86uvn75cXlzlrSjqmLd9qYThtJSMdg0zTQFNV9VcgmwpiJbJvuN1BT0A9HWroGJMyI4KU0jJa87Ps7eHb7rc9xUw6tliC9NkHPgVNZNKVbKWtfgPlMuCKqVoQt_8hd76Nbj0kJ0SQnJV7YbsoNrgEQP0egl2NmHTjOq9YH0UrFPBei9YV0nz6sF5bWbofit-NZqA4gAwjdwA4Y_of7i-PkS98doMwaK--VYkIH0ZLhUV_Ccx-r1I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1534453684</pqid></control><display><type>article</type><title>Transgenic Arabidopsis expressing osmolyte glycine betaine synthesizing enzymes from halophilic methanogen promote tolerance to drought and salt stress</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Lai, Shu-Jung ; Lai, Mei-Chin ; Lee, Ren-Jye ; Chen, Yu-Hsuan ; Yen, Hungchen Emilie</creator><creatorcontrib>Lai, Shu-Jung ; Lai, Mei-Chin ; Lee, Ren-Jye ; Chen, Yu-Hsuan ; Yen, Hungchen Emilie</creatorcontrib><description>Glycine betaine (betaine) has the highest cellular osmoprotective efficiency which does not accumulate in most glycophytes. The biosynthetic pathway for betaine in higher plants is derived from the oxidation of low-accumulating metabolite choline that limiting the ability of most plants to produce betaine. Halophilic methanoarchaeon Methanohalophilus portucalensis FDF1ᵀ is a model anaerobic methanogen to study the acclimation of water-deficit stresses which de novo synthesize betaine by the stepwise methylation of glycine, catalyzed by glycine sarcosine N-methyltransferase (GSMT) and sarcosine dimethylglycine N-methyltransferase. In this report, genes encoding these betaine biosynthesizing enzymes, Mpgsmt and Mpsdmt, were introduced into Arabidopsis. The homozygous Mpgsmt (G), Mpsdmt (S), and their cross, Mpgsmt and Mpsdmt (G × S) plants showed increased accumulation of betaine. Water loss from detached leaves was slower in G, S, and G × S lines than wild-type (WT). Pot-grown transgenic plants showed better growth than WT after 9 days of withholding water or irrigating with 300 mM NaCl. G, S, G × S lines also maintained higher relative water content and photosystem II activity than WT under salt stress. This suggests heterologously expressed Mpgsmt and Mpsdmt could enhance tolerance to drought and salt stress in Arabidopsis. We also found a twofold increase in quaternary ammonium compounds in salt-stressed leaves of G lines, presumably due to the activation of GSMT activity by high salinity. This study demonstrates that introducing stress-activated enzymes is a way of avoiding the divergence of primary metabolites under normal growing conditions, while also providing protection in stressful environments.</description><identifier>ISSN: 0167-4412</identifier><identifier>EISSN: 1573-5028</identifier><identifier>DOI: 10.1007/s11103-014-0195-8</identifier><identifier>PMID: 24803410</identifier><language>eng</language><publisher>Dordrecht: Springer-Verlag</publisher><subject>acclimation ; Acclimatization ; Ammonium ; Arabidopsis ; Arabidopsis - genetics ; Arabidopsis - metabolism ; Archaeal Proteins - genetics ; Archaeal Proteins - metabolism ; betaine ; Betaine - metabolism ; Biochemistry ; Biomedical and Life Sciences ; Biosynthesis ; choline ; Drought ; drought tolerance ; Enzymes ; Gene Expression Regulation, Enzymologic - physiology ; Gene Expression Regulation, Plant - physiology ; genes ; irrigation ; Leaves ; Life Sciences ; Metabolites ; methanogens ; Methanohalophilus portucalensis ; Methanosarcinaceae - enzymology ; Methanosarcinaceae - genetics ; methylation ; oxidation ; photosystem II ; Plant biology ; Plant Pathology ; Plant resistance ; Plant Sciences ; Plants, Genetically Modified ; salinity ; salt stress ; Salt-Tolerance ; Salts ; Sodium Chloride ; Stress, Physiological - genetics ; Stress, Physiological - physiology ; Transgenic plants ; Water - metabolism ; Water content ; Water loss</subject><ispartof>Plant molecular biology, 2014-07, Vol.85 (4-5), p.429-441</ispartof><rights>Springer Science+Business Media Dordrecht 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-cf764a307510db1ab2ebd8935e5c0e4c15fd398efeeef9c6e81145d04a2553933</citedby><cites>FETCH-LOGICAL-c429t-cf764a307510db1ab2ebd8935e5c0e4c15fd398efeeef9c6e81145d04a2553933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11103-014-0195-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11103-014-0195-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24803410$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lai, Shu-Jung</creatorcontrib><creatorcontrib>Lai, Mei-Chin</creatorcontrib><creatorcontrib>Lee, Ren-Jye</creatorcontrib><creatorcontrib>Chen, Yu-Hsuan</creatorcontrib><creatorcontrib>Yen, Hungchen Emilie</creatorcontrib><title>Transgenic Arabidopsis expressing osmolyte glycine betaine synthesizing enzymes from halophilic methanogen promote tolerance to drought and salt stress</title><title>Plant molecular biology</title><addtitle>Plant Mol Biol</addtitle><addtitle>Plant Mol Biol</addtitle><description>Glycine betaine (betaine) has the highest cellular osmoprotective efficiency which does not accumulate in most glycophytes. The biosynthetic pathway for betaine in higher plants is derived from the oxidation of low-accumulating metabolite choline that limiting the ability of most plants to produce betaine. Halophilic methanoarchaeon Methanohalophilus portucalensis FDF1ᵀ is a model anaerobic methanogen to study the acclimation of water-deficit stresses which de novo synthesize betaine by the stepwise methylation of glycine, catalyzed by glycine sarcosine N-methyltransferase (GSMT) and sarcosine dimethylglycine N-methyltransferase. In this report, genes encoding these betaine biosynthesizing enzymes, Mpgsmt and Mpsdmt, were introduced into Arabidopsis. The homozygous Mpgsmt (G), Mpsdmt (S), and their cross, Mpgsmt and Mpsdmt (G × S) plants showed increased accumulation of betaine. Water loss from detached leaves was slower in G, S, and G × S lines than wild-type (WT). Pot-grown transgenic plants showed better growth than WT after 9 days of withholding water or irrigating with 300 mM NaCl. G, S, G × S lines also maintained higher relative water content and photosystem II activity than WT under salt stress. This suggests heterologously expressed Mpgsmt and Mpsdmt could enhance tolerance to drought and salt stress in Arabidopsis. We also found a twofold increase in quaternary ammonium compounds in salt-stressed leaves of G lines, presumably due to the activation of GSMT activity by high salinity. This study demonstrates that introducing stress-activated enzymes is a way of avoiding the divergence of primary metabolites under normal growing conditions, while also providing protection in stressful environments.</description><subject>acclimation</subject><subject>Acclimatization</subject><subject>Ammonium</subject><subject>Arabidopsis</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - metabolism</subject><subject>Archaeal Proteins - genetics</subject><subject>Archaeal Proteins - metabolism</subject><subject>betaine</subject><subject>Betaine - metabolism</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biosynthesis</subject><subject>choline</subject><subject>Drought</subject><subject>drought tolerance</subject><subject>Enzymes</subject><subject>Gene Expression Regulation, Enzymologic - physiology</subject><subject>Gene Expression Regulation, Plant - physiology</subject><subject>genes</subject><subject>irrigation</subject><subject>Leaves</subject><subject>Life Sciences</subject><subject>Metabolites</subject><subject>methanogens</subject><subject>Methanohalophilus portucalensis</subject><subject>Methanosarcinaceae - enzymology</subject><subject>Methanosarcinaceae - genetics</subject><subject>methylation</subject><subject>oxidation</subject><subject>photosystem II</subject><subject>Plant biology</subject><subject>Plant Pathology</subject><subject>Plant resistance</subject><subject>Plant Sciences</subject><subject>Plants, Genetically Modified</subject><subject>salinity</subject><subject>salt stress</subject><subject>Salt-Tolerance</subject><subject>Salts</subject><subject>Sodium Chloride</subject><subject>Stress, Physiological - genetics</subject><subject>Stress, Physiological - physiology</subject><subject>Transgenic plants</subject><subject>Water - metabolism</subject><subject>Water content</subject><subject>Water loss</subject><issn>0167-4412</issn><issn>1573-5028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNks2K1zAUxYsozt_RB3CjATduqknz0XY5DH7BgAtn1iFtb9sMbVJzU5jOi_i6pnQUcSEuQgL3d85JOMmyl4y-Y5SW75ExRnlOmUirlnn1KDsxWfJc0qJ6nJ0oU2UuBCvOsmeIt5QmFVdPs7NCVJQLRk_Zj-tgHA7gbEsugmls5xe0SOBuCYBo3UA8zn7aIpBh2lrrgDQQzb7j5uIIaO93Ctz9NgOSPviZjGbyy2inZDpDHI3zKYEsaeSTT_QTpNR2P5Eu-HUYIzGuI2imSDDuwc-zJ72ZEF487OfZzccP15ef86uvn75cXlzlrSjqmLd9qYThtJSMdg0zTQFNV9VcgmwpiJbJvuN1BT0A9HWroGJMyI4KU0jJa87Ps7eHb7rc9xUw6tliC9NkHPgVNZNKVbKWtfgPlMuCKqVoQt_8hd76Nbj0kJ0SQnJV7YbsoNrgEQP0egl2NmHTjOq9YH0UrFPBei9YV0nz6sF5bWbofit-NZqA4gAwjdwA4Y_of7i-PkS98doMwaK--VYkIH0ZLhUV_Ccx-r1I</recordid><startdate>20140701</startdate><enddate>20140701</enddate><creator>Lai, Shu-Jung</creator><creator>Lai, Mei-Chin</creator><creator>Lee, Ren-Jye</creator><creator>Chen, Yu-Hsuan</creator><creator>Yen, Hungchen Emilie</creator><general>Springer-Verlag</general><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>7QO</scope></search><sort><creationdate>20140701</creationdate><title>Transgenic Arabidopsis expressing osmolyte glycine betaine synthesizing enzymes from halophilic methanogen promote tolerance to drought and salt stress</title><author>Lai, Shu-Jung ; Lai, Mei-Chin ; Lee, Ren-Jye ; Chen, Yu-Hsuan ; Yen, Hungchen Emilie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-cf764a307510db1ab2ebd8935e5c0e4c15fd398efeeef9c6e81145d04a2553933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>acclimation</topic><topic>Acclimatization</topic><topic>Ammonium</topic><topic>Arabidopsis</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - metabolism</topic><topic>Archaeal Proteins - genetics</topic><topic>Archaeal Proteins - metabolism</topic><topic>betaine</topic><topic>Betaine - metabolism</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biosynthesis</topic><topic>choline</topic><topic>Drought</topic><topic>drought tolerance</topic><topic>Enzymes</topic><topic>Gene Expression Regulation, Enzymologic - physiology</topic><topic>Gene Expression Regulation, Plant - physiology</topic><topic>genes</topic><topic>irrigation</topic><topic>Leaves</topic><topic>Life Sciences</topic><topic>Metabolites</topic><topic>methanogens</topic><topic>Methanohalophilus portucalensis</topic><topic>Methanosarcinaceae - enzymology</topic><topic>Methanosarcinaceae - genetics</topic><topic>methylation</topic><topic>oxidation</topic><topic>photosystem II</topic><topic>Plant biology</topic><topic>Plant Pathology</topic><topic>Plant resistance</topic><topic>Plant Sciences</topic><topic>Plants, Genetically Modified</topic><topic>salinity</topic><topic>salt stress</topic><topic>Salt-Tolerance</topic><topic>Salts</topic><topic>Sodium Chloride</topic><topic>Stress, Physiological - genetics</topic><topic>Stress, Physiological - physiology</topic><topic>Transgenic plants</topic><topic>Water - metabolism</topic><topic>Water content</topic><topic>Water loss</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lai, Shu-Jung</creatorcontrib><creatorcontrib>Lai, Mei-Chin</creatorcontrib><creatorcontrib>Lee, Ren-Jye</creatorcontrib><creatorcontrib>Chen, Yu-Hsuan</creatorcontrib><creatorcontrib>Yen, Hungchen Emilie</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><jtitle>Plant molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lai, Shu-Jung</au><au>Lai, Mei-Chin</au><au>Lee, Ren-Jye</au><au>Chen, Yu-Hsuan</au><au>Yen, Hungchen Emilie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transgenic Arabidopsis expressing osmolyte glycine betaine synthesizing enzymes from halophilic methanogen promote tolerance to drought and salt stress</atitle><jtitle>Plant molecular biology</jtitle><stitle>Plant Mol Biol</stitle><addtitle>Plant Mol Biol</addtitle><date>2014-07-01</date><risdate>2014</risdate><volume>85</volume><issue>4-5</issue><spage>429</spage><epage>441</epage><pages>429-441</pages><issn>0167-4412</issn><eissn>1573-5028</eissn><abstract>Glycine betaine (betaine) has the highest cellular osmoprotective efficiency which does not accumulate in most glycophytes. The biosynthetic pathway for betaine in higher plants is derived from the oxidation of low-accumulating metabolite choline that limiting the ability of most plants to produce betaine. Halophilic methanoarchaeon Methanohalophilus portucalensis FDF1ᵀ is a model anaerobic methanogen to study the acclimation of water-deficit stresses which de novo synthesize betaine by the stepwise methylation of glycine, catalyzed by glycine sarcosine N-methyltransferase (GSMT) and sarcosine dimethylglycine N-methyltransferase. In this report, genes encoding these betaine biosynthesizing enzymes, Mpgsmt and Mpsdmt, were introduced into Arabidopsis. The homozygous Mpgsmt (G), Mpsdmt (S), and their cross, Mpgsmt and Mpsdmt (G × S) plants showed increased accumulation of betaine. Water loss from detached leaves was slower in G, S, and G × S lines than wild-type (WT). Pot-grown transgenic plants showed better growth than WT after 9 days of withholding water or irrigating with 300 mM NaCl. G, S, G × S lines also maintained higher relative water content and photosystem II activity than WT under salt stress. This suggests heterologously expressed Mpgsmt and Mpsdmt could enhance tolerance to drought and salt stress in Arabidopsis. We also found a twofold increase in quaternary ammonium compounds in salt-stressed leaves of G lines, presumably due to the activation of GSMT activity by high salinity. This study demonstrates that introducing stress-activated enzymes is a way of avoiding the divergence of primary metabolites under normal growing conditions, while also providing protection in stressful environments.</abstract><cop>Dordrecht</cop><pub>Springer-Verlag</pub><pmid>24803410</pmid><doi>10.1007/s11103-014-0195-8</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0167-4412
ispartof Plant molecular biology, 2014-07, Vol.85 (4-5), p.429-441
issn 0167-4412
1573-5028
language eng
recordid cdi_proquest_miscellaneous_1566859594
source MEDLINE; SpringerLink Journals
subjects acclimation
Acclimatization
Ammonium
Arabidopsis
Arabidopsis - genetics
Arabidopsis - metabolism
Archaeal Proteins - genetics
Archaeal Proteins - metabolism
betaine
Betaine - metabolism
Biochemistry
Biomedical and Life Sciences
Biosynthesis
choline
Drought
drought tolerance
Enzymes
Gene Expression Regulation, Enzymologic - physiology
Gene Expression Regulation, Plant - physiology
genes
irrigation
Leaves
Life Sciences
Metabolites
methanogens
Methanohalophilus portucalensis
Methanosarcinaceae - enzymology
Methanosarcinaceae - genetics
methylation
oxidation
photosystem II
Plant biology
Plant Pathology
Plant resistance
Plant Sciences
Plants, Genetically Modified
salinity
salt stress
Salt-Tolerance
Salts
Sodium Chloride
Stress, Physiological - genetics
Stress, Physiological - physiology
Transgenic plants
Water - metabolism
Water content
Water loss
title Transgenic Arabidopsis expressing osmolyte glycine betaine synthesizing enzymes from halophilic methanogen promote tolerance to drought and salt stress
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T09%3A02%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transgenic%20Arabidopsis%20expressing%20osmolyte%20glycine%20betaine%20synthesizing%20enzymes%20from%20halophilic%20methanogen%20promote%20tolerance%20to%20drought%20and%20salt%20stress&rft.jtitle=Plant%20molecular%20biology&rft.au=Lai,%20Shu-Jung&rft.date=2014-07-01&rft.volume=85&rft.issue=4-5&rft.spage=429&rft.epage=441&rft.pages=429-441&rft.issn=0167-4412&rft.eissn=1573-5028&rft_id=info:doi/10.1007/s11103-014-0195-8&rft_dat=%3Cproquest_cross%3E1535206660%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1534453684&rft_id=info:pmid/24803410&rfr_iscdi=true