On the fine structure of dipolarization fronts
Measurements from the closely spaced Cluster spacecraft are used to study the structure of the magnetic and electric fields within the magnetic ramp of dipolarization fronts (DF) observed close to the neutral sheet and the midnight meridian (YGSM
Gespeichert in:
Veröffentlicht in: | Journal of geophysical research. Space physics 2014-08, Vol.119 (8), p.6367-6385 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6385 |
---|---|
container_issue | 8 |
container_start_page | 6367 |
container_title | Journal of geophysical research. Space physics |
container_volume | 119 |
creator | Balikhin, M. A. Runov, A. Walker, S. N. Gedalin, M. Dandouras, I. Hobara, Y. Fazakerley, A. |
description | Measurements from the closely spaced Cluster spacecraft are used to study the structure of the magnetic and electric fields within the magnetic ramp of dipolarization fronts (DF) observed close to the neutral sheet and the midnight meridian (YGSM |
doi_str_mv | 10.1002/2014JA019908 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1566859436</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3557650541</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4407-17eeb4355757e27604a68037c106f9a095fdf4712b00d6ab259d9e99100ea71a3</originalsourceid><addsrcrecordid>eNp90E1Lw0AQBuAgCpbamz8g4MWDqTPZ72MtNrVUC6J4XLbpBlPTpO4maP31RqIiHrqXXZbnHWYmCE4RhggQX8aAdDYCVArkQdCLkatIUYgPf95EwnEw8H4N7ZHtF7JeMFyUYf1swywvbehr16R142xYZeEq31aFcfmHqfOqDDNXlbU_CY4yU3g7-L77wePk-mE8jeaL5GY8mkcppSAiFNYuKWFMMGFjwYEaLoGIFIFnyoBi2SqjAuMlwIqbZczUSlml2kGsEWhIPzjv6m5d9dpYX-tN7lNbFKa0VeM1Ms4lU5Twlp79o-uqcWXbnUaFXCKTku1VnDKKIuaqVRedSl3lvbOZ3rp8Y9xOI-ivLeu_W2456fhbXtjdXqtnyf2IISrRpqIulfvavv-mjHvRXBDB9NNdoqe3eEXUJNGcfALls4hj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1645417269</pqid></control><display><type>article</type><title>On the fine structure of dipolarization fronts</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Free Content</source><creator>Balikhin, M. A. ; Runov, A. ; Walker, S. N. ; Gedalin, M. ; Dandouras, I. ; Hobara, Y. ; Fazakerley, A.</creator><creatorcontrib>Balikhin, M. A. ; Runov, A. ; Walker, S. N. ; Gedalin, M. ; Dandouras, I. ; Hobara, Y. ; Fazakerley, A.</creatorcontrib><description>Measurements from the closely spaced Cluster spacecraft are used to study the structure of the magnetic and electric fields within the magnetic ramp of dipolarization fronts (DF) observed close to the neutral sheet and the midnight meridian (YGSM<3RE). The spacecraft separation was small enough (<300 km) to treat the magnetic ramp of the DF front as a planar structure as indicated from variance analysis. The finite value of the magnetic field along the minimum variance direction for the events studied indicates that the dipolarization front structure was distinct from a tangential discontinuity. In addition to the main increase of the magnetic field in the maximum variance component, strong oscillations were observed in the intermediate component. The presence of this oscillatory structure results in an expansion of the region in which a change of magnetic pressure occurs, the size of which is typically an ion Larmor radius or greater. This widening is important in maintaining the pressure balance at the edge of the DF. This phenomenon resembles observations of intense current sheets in the magnetotail and also laboratory experiments of current sheet formation, in which a similar widening of the ramp region has been observed. In this paper we argue against the idea that an electron temperature anisotropy, resulting in electron curvature currents, can explain the formation of the oscillatory structures observed at DFs. These oscillations can be explained as eigenmode waves of the plasma that propagate away from the disturbance (DF) that is moving at subsonic speeds. Oscillations observed within the magnetic ramp indicate field‐aligned currents that are expected to be associated with DF.
Key Points
The fine structure of the dipolarization front is describedIdentification of oscillations within the dipolarization front are presentedThe bipolar structure of the electric field within dipolarization front is shown</description><identifier>ISSN: 2169-9380</identifier><identifier>EISSN: 2169-9402</identifier><identifier>DOI: 10.1002/2014JA019908</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Alignment ; Anisotropy ; Cluster spacecraft ; Current sheets ; Curvature ; dipolarization front ; Electric fields ; Electron energy ; Fine structure ; Fronts ; Geophysics ; Laboratory experiments ; Larmor radius ; Magnetic fields ; magnetotail ; Magnetotails ; Oscillations ; Separation ; Sheets ; Spacecraft ; Variance ; Variance analysis ; Widening</subject><ispartof>Journal of geophysical research. Space physics, 2014-08, Vol.119 (8), p.6367-6385</ispartof><rights>2014. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4407-17eeb4355757e27604a68037c106f9a095fdf4712b00d6ab259d9e99100ea71a3</citedby><cites>FETCH-LOGICAL-c4407-17eeb4355757e27604a68037c106f9a095fdf4712b00d6ab259d9e99100ea71a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2014JA019908$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2014JA019908$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids></links><search><creatorcontrib>Balikhin, M. A.</creatorcontrib><creatorcontrib>Runov, A.</creatorcontrib><creatorcontrib>Walker, S. N.</creatorcontrib><creatorcontrib>Gedalin, M.</creatorcontrib><creatorcontrib>Dandouras, I.</creatorcontrib><creatorcontrib>Hobara, Y.</creatorcontrib><creatorcontrib>Fazakerley, A.</creatorcontrib><title>On the fine structure of dipolarization fronts</title><title>Journal of geophysical research. Space physics</title><addtitle>J. Geophys. Res. Space Physics</addtitle><description>Measurements from the closely spaced Cluster spacecraft are used to study the structure of the magnetic and electric fields within the magnetic ramp of dipolarization fronts (DF) observed close to the neutral sheet and the midnight meridian (YGSM<3RE). The spacecraft separation was small enough (<300 km) to treat the magnetic ramp of the DF front as a planar structure as indicated from variance analysis. The finite value of the magnetic field along the minimum variance direction for the events studied indicates that the dipolarization front structure was distinct from a tangential discontinuity. In addition to the main increase of the magnetic field in the maximum variance component, strong oscillations were observed in the intermediate component. The presence of this oscillatory structure results in an expansion of the region in which a change of magnetic pressure occurs, the size of which is typically an ion Larmor radius or greater. This widening is important in maintaining the pressure balance at the edge of the DF. This phenomenon resembles observations of intense current sheets in the magnetotail and also laboratory experiments of current sheet formation, in which a similar widening of the ramp region has been observed. In this paper we argue against the idea that an electron temperature anisotropy, resulting in electron curvature currents, can explain the formation of the oscillatory structures observed at DFs. These oscillations can be explained as eigenmode waves of the plasma that propagate away from the disturbance (DF) that is moving at subsonic speeds. Oscillations observed within the magnetic ramp indicate field‐aligned currents that are expected to be associated with DF.
Key Points
The fine structure of the dipolarization front is describedIdentification of oscillations within the dipolarization front are presentedThe bipolar structure of the electric field within dipolarization front is shown</description><subject>Alignment</subject><subject>Anisotropy</subject><subject>Cluster spacecraft</subject><subject>Current sheets</subject><subject>Curvature</subject><subject>dipolarization front</subject><subject>Electric fields</subject><subject>Electron energy</subject><subject>Fine structure</subject><subject>Fronts</subject><subject>Geophysics</subject><subject>Laboratory experiments</subject><subject>Larmor radius</subject><subject>Magnetic fields</subject><subject>magnetotail</subject><subject>Magnetotails</subject><subject>Oscillations</subject><subject>Separation</subject><subject>Sheets</subject><subject>Spacecraft</subject><subject>Variance</subject><subject>Variance analysis</subject><subject>Widening</subject><issn>2169-9380</issn><issn>2169-9402</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp90E1Lw0AQBuAgCpbamz8g4MWDqTPZ72MtNrVUC6J4XLbpBlPTpO4maP31RqIiHrqXXZbnHWYmCE4RhggQX8aAdDYCVArkQdCLkatIUYgPf95EwnEw8H4N7ZHtF7JeMFyUYf1swywvbehr16R142xYZeEq31aFcfmHqfOqDDNXlbU_CY4yU3g7-L77wePk-mE8jeaL5GY8mkcppSAiFNYuKWFMMGFjwYEaLoGIFIFnyoBi2SqjAuMlwIqbZczUSlml2kGsEWhIPzjv6m5d9dpYX-tN7lNbFKa0VeM1Ms4lU5Twlp79o-uqcWXbnUaFXCKTku1VnDKKIuaqVRedSl3lvbOZ3rp8Y9xOI-ivLeu_W2456fhbXtjdXqtnyf2IISrRpqIulfvavv-mjHvRXBDB9NNdoqe3eEXUJNGcfALls4hj</recordid><startdate>201408</startdate><enddate>201408</enddate><creator>Balikhin, M. A.</creator><creator>Runov, A.</creator><creator>Walker, S. N.</creator><creator>Gedalin, M.</creator><creator>Dandouras, I.</creator><creator>Hobara, Y.</creator><creator>Fazakerley, A.</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope></search><sort><creationdate>201408</creationdate><title>On the fine structure of dipolarization fronts</title><author>Balikhin, M. A. ; Runov, A. ; Walker, S. N. ; Gedalin, M. ; Dandouras, I. ; Hobara, Y. ; Fazakerley, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4407-17eeb4355757e27604a68037c106f9a095fdf4712b00d6ab259d9e99100ea71a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Alignment</topic><topic>Anisotropy</topic><topic>Cluster spacecraft</topic><topic>Current sheets</topic><topic>Curvature</topic><topic>dipolarization front</topic><topic>Electric fields</topic><topic>Electron energy</topic><topic>Fine structure</topic><topic>Fronts</topic><topic>Geophysics</topic><topic>Laboratory experiments</topic><topic>Larmor radius</topic><topic>Magnetic fields</topic><topic>magnetotail</topic><topic>Magnetotails</topic><topic>Oscillations</topic><topic>Separation</topic><topic>Sheets</topic><topic>Spacecraft</topic><topic>Variance</topic><topic>Variance analysis</topic><topic>Widening</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Balikhin, M. A.</creatorcontrib><creatorcontrib>Runov, A.</creatorcontrib><creatorcontrib>Walker, S. N.</creatorcontrib><creatorcontrib>Gedalin, M.</creatorcontrib><creatorcontrib>Dandouras, I.</creatorcontrib><creatorcontrib>Hobara, Y.</creatorcontrib><creatorcontrib>Fazakerley, A.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of geophysical research. Space physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Balikhin, M. A.</au><au>Runov, A.</au><au>Walker, S. N.</au><au>Gedalin, M.</au><au>Dandouras, I.</au><au>Hobara, Y.</au><au>Fazakerley, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the fine structure of dipolarization fronts</atitle><jtitle>Journal of geophysical research. Space physics</jtitle><addtitle>J. Geophys. Res. Space Physics</addtitle><date>2014-08</date><risdate>2014</risdate><volume>119</volume><issue>8</issue><spage>6367</spage><epage>6385</epage><pages>6367-6385</pages><issn>2169-9380</issn><eissn>2169-9402</eissn><abstract>Measurements from the closely spaced Cluster spacecraft are used to study the structure of the magnetic and electric fields within the magnetic ramp of dipolarization fronts (DF) observed close to the neutral sheet and the midnight meridian (YGSM<3RE). The spacecraft separation was small enough (<300 km) to treat the magnetic ramp of the DF front as a planar structure as indicated from variance analysis. The finite value of the magnetic field along the minimum variance direction for the events studied indicates that the dipolarization front structure was distinct from a tangential discontinuity. In addition to the main increase of the magnetic field in the maximum variance component, strong oscillations were observed in the intermediate component. The presence of this oscillatory structure results in an expansion of the region in which a change of magnetic pressure occurs, the size of which is typically an ion Larmor radius or greater. This widening is important in maintaining the pressure balance at the edge of the DF. This phenomenon resembles observations of intense current sheets in the magnetotail and also laboratory experiments of current sheet formation, in which a similar widening of the ramp region has been observed. In this paper we argue against the idea that an electron temperature anisotropy, resulting in electron curvature currents, can explain the formation of the oscillatory structures observed at DFs. These oscillations can be explained as eigenmode waves of the plasma that propagate away from the disturbance (DF) that is moving at subsonic speeds. Oscillations observed within the magnetic ramp indicate field‐aligned currents that are expected to be associated with DF.
Key Points
The fine structure of the dipolarization front is describedIdentification of oscillations within the dipolarization front are presentedThe bipolar structure of the electric field within dipolarization front is shown</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/2014JA019908</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-9380 |
ispartof | Journal of geophysical research. Space physics, 2014-08, Vol.119 (8), p.6367-6385 |
issn | 2169-9380 2169-9402 |
language | eng |
recordid | cdi_proquest_miscellaneous_1566859436 |
source | Wiley Online Library Journals Frontfile Complete; Wiley Online Library Free Content |
subjects | Alignment Anisotropy Cluster spacecraft Current sheets Curvature dipolarization front Electric fields Electron energy Fine structure Fronts Geophysics Laboratory experiments Larmor radius Magnetic fields magnetotail Magnetotails Oscillations Separation Sheets Spacecraft Variance Variance analysis Widening |
title | On the fine structure of dipolarization fronts |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T21%3A10%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20fine%20structure%20of%20dipolarization%20fronts&rft.jtitle=Journal%20of%20geophysical%20research.%20Space%20physics&rft.au=Balikhin,%20M.%20A.&rft.date=2014-08&rft.volume=119&rft.issue=8&rft.spage=6367&rft.epage=6385&rft.pages=6367-6385&rft.issn=2169-9380&rft.eissn=2169-9402&rft_id=info:doi/10.1002/2014JA019908&rft_dat=%3Cproquest_cross%3E3557650541%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1645417269&rft_id=info:pmid/&rfr_iscdi=true |