Phase-contrast velocity mapping for highly diffusive fluids: Optimal bipolar gradient pulse parameters for hyperpolarized helium-3
Purpose In MR‐velocity phase‐contrast measurements, increasing the encoding bipolar gradient, i.e., decreasing the field of speed, usually improves measurement precision. However, in gases, fast diffusion during the bipolar gradient pulses may dramatically decrease the signal‐to‐noise ratio, thus de...
Gespeichert in:
Veröffentlicht in: | Magnetic resonance in medicine 2014-10, Vol.72 (4), p.1072-1078 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1078 |
---|---|
container_issue | 4 |
container_start_page | 1072 |
container_title | Magnetic resonance in medicine |
container_volume | 72 |
creator | Martin, Lionel Maître, Xavier de Rochefort, Ludovic Sarracanie, Mathieu Friese, Marlies Hagot, Pascal Durand, Emmanuel |
description | Purpose
In MR‐velocity phase‐contrast measurements, increasing the encoding bipolar gradient, i.e., decreasing the field of speed, usually improves measurement precision. However, in gases, fast diffusion during the bipolar gradient pulses may dramatically decrease the signal‐to‐noise ratio, thus degrading measurement precision. These two effects are contradictory. This work aims at determining the optimal sequence parameters to improve the velocity measurement precision.
Theory and Methods
This work presents the theoretical optimization of bipolar gradient parameters (duration and amplitude) to improve velocity measurement precision. An analytical approximation is given as well as a numerical optimization. It is shown that the solution depends on the diffusion coefficient and T2*. Experimental validation using hyperpolarized 3He diluted in various buffer gases (4He, N2, and SF6) is presented at 1.5 Tesla (T) in a straight pipe.
Results
Excellent agreement was found with the theoretical results for prediction of optimal field of speed and good agreement was found for the precision in measured velocity, but for SF6 buffered gas.
Conclusion
The theoretical predictions were validated, providing a way to optimize velocity mapping in gases. Magn Reson Med 72:1072–1078, 2014. © 2013 Wiley Periodicals, Inc. |
doi_str_mv | 10.1002/mrm.25005 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1566859347</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3433252171</sourcerecordid><originalsourceid>FETCH-LOGICAL-i4185-c310d4dca9cb69e305179280a0e07601a151b502cf82850686d8e33eee06da9d3</originalsourceid><addsrcrecordid>eNqN0ctu1DAUBmALgei0sOAFkCU23aQ9viUOO1TRKVJLUcWlO8sTn8y4OBfspJAueXLSmdIFK1a25O8_ks9PyCsGRwyAHzexOeIKQD0hC6Y4z7gq5VOygEJCJlgp98h-SjcAUJaFfE72uJRQaCEW5PenjU2YVV07RJsGeouhq_ww0cb2vW_XtO4i3fj1JkzU-boek79FWofRu_SWXvaDb2ygK993wUa6jtZ5bAfajyEh7W20DQ4Y027M1GPcQn-Hjm4w-LHJxAvyrLYzf_lwHpAvp-8_n5xl55fLDyfvzjMvmVZZJRg46SpbVqu8RAGKFSXXYAGhyIFZpthKAa9qzbWCXOdOoxCICLmzpRMH5HA3t4_djxHTYBqfKgzBttiNyTCV51qVQhb_QwXkggPM9M0_9KYbYzt_5F5xpgWTclavH9S4atCZPs57i5P5W8QMjnfgpw84Pb4zMPcNm7lhs23YXFxdbC9zItslfBrw12PCxu8mL0ShzLePS7Ncnl59vWbXRoo_boGoJg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1562183144</pqid></control><display><type>article</type><title>Phase-contrast velocity mapping for highly diffusive fluids: Optimal bipolar gradient pulse parameters for hyperpolarized helium-3</title><source>Wiley Online Library - AutoHoldings Journals</source><source>MEDLINE</source><source>Wiley Online Library Free Content</source><creator>Martin, Lionel ; Maître, Xavier ; de Rochefort, Ludovic ; Sarracanie, Mathieu ; Friese, Marlies ; Hagot, Pascal ; Durand, Emmanuel</creator><creatorcontrib>Martin, Lionel ; Maître, Xavier ; de Rochefort, Ludovic ; Sarracanie, Mathieu ; Friese, Marlies ; Hagot, Pascal ; Durand, Emmanuel</creatorcontrib><description>Purpose
In MR‐velocity phase‐contrast measurements, increasing the encoding bipolar gradient, i.e., decreasing the field of speed, usually improves measurement precision. However, in gases, fast diffusion during the bipolar gradient pulses may dramatically decrease the signal‐to‐noise ratio, thus degrading measurement precision. These two effects are contradictory. This work aims at determining the optimal sequence parameters to improve the velocity measurement precision.
Theory and Methods
This work presents the theoretical optimization of bipolar gradient parameters (duration and amplitude) to improve velocity measurement precision. An analytical approximation is given as well as a numerical optimization. It is shown that the solution depends on the diffusion coefficient and T2*. Experimental validation using hyperpolarized 3He diluted in various buffer gases (4He, N2, and SF6) is presented at 1.5 Tesla (T) in a straight pipe.
Results
Excellent agreement was found with the theoretical results for prediction of optimal field of speed and good agreement was found for the precision in measured velocity, but for SF6 buffered gas.
Conclusion
The theoretical predictions were validated, providing a way to optimize velocity mapping in gases. Magn Reson Med 72:1072–1078, 2014. © 2013 Wiley Periodicals, Inc.</description><identifier>ISSN: 0740-3194</identifier><identifier>EISSN: 1522-2594</identifier><identifier>DOI: 10.1002/mrm.25005</identifier><identifier>PMID: 24407833</identifier><identifier>CODEN: MRMEEN</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>airflow velocity ; Algorithms ; Contrast Media - analysis ; Contrast Media - chemistry ; Diffusion ; flow ; gas ; Helium - analysis ; Helium - chemistry ; hyperpolarized helium-3 ; Image Interpretation, Computer-Assisted - methods ; Isotopes - analysis ; Isotopes - chemistry ; Magnetic Resonance Imaging - methods ; phase-contrast ; phase-contrast MRI ; Radiopharmaceuticals - analysis ; Radiopharmaceuticals - chemistry ; Reproducibility of Results ; Rheology - methods ; Sensitivity and Specificity</subject><ispartof>Magnetic resonance in medicine, 2014-10, Vol.72 (4), p.1072-1078</ispartof><rights>Copyright © 2013 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmrm.25005$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmrm.25005$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,1432,27915,27916,45565,45566,46400,46824</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24407833$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Martin, Lionel</creatorcontrib><creatorcontrib>Maître, Xavier</creatorcontrib><creatorcontrib>de Rochefort, Ludovic</creatorcontrib><creatorcontrib>Sarracanie, Mathieu</creatorcontrib><creatorcontrib>Friese, Marlies</creatorcontrib><creatorcontrib>Hagot, Pascal</creatorcontrib><creatorcontrib>Durand, Emmanuel</creatorcontrib><title>Phase-contrast velocity mapping for highly diffusive fluids: Optimal bipolar gradient pulse parameters for hyperpolarized helium-3</title><title>Magnetic resonance in medicine</title><addtitle>Magn. Reson. Med</addtitle><description>Purpose
In MR‐velocity phase‐contrast measurements, increasing the encoding bipolar gradient, i.e., decreasing the field of speed, usually improves measurement precision. However, in gases, fast diffusion during the bipolar gradient pulses may dramatically decrease the signal‐to‐noise ratio, thus degrading measurement precision. These two effects are contradictory. This work aims at determining the optimal sequence parameters to improve the velocity measurement precision.
Theory and Methods
This work presents the theoretical optimization of bipolar gradient parameters (duration and amplitude) to improve velocity measurement precision. An analytical approximation is given as well as a numerical optimization. It is shown that the solution depends on the diffusion coefficient and T2*. Experimental validation using hyperpolarized 3He diluted in various buffer gases (4He, N2, and SF6) is presented at 1.5 Tesla (T) in a straight pipe.
Results
Excellent agreement was found with the theoretical results for prediction of optimal field of speed and good agreement was found for the precision in measured velocity, but for SF6 buffered gas.
Conclusion
The theoretical predictions were validated, providing a way to optimize velocity mapping in gases. Magn Reson Med 72:1072–1078, 2014. © 2013 Wiley Periodicals, Inc.</description><subject>airflow velocity</subject><subject>Algorithms</subject><subject>Contrast Media - analysis</subject><subject>Contrast Media - chemistry</subject><subject>Diffusion</subject><subject>flow</subject><subject>gas</subject><subject>Helium - analysis</subject><subject>Helium - chemistry</subject><subject>hyperpolarized helium-3</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Isotopes - analysis</subject><subject>Isotopes - chemistry</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>phase-contrast</subject><subject>phase-contrast MRI</subject><subject>Radiopharmaceuticals - analysis</subject><subject>Radiopharmaceuticals - chemistry</subject><subject>Reproducibility of Results</subject><subject>Rheology - methods</subject><subject>Sensitivity and Specificity</subject><issn>0740-3194</issn><issn>1522-2594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqN0ctu1DAUBmALgei0sOAFkCU23aQ9viUOO1TRKVJLUcWlO8sTn8y4OBfspJAueXLSmdIFK1a25O8_ks9PyCsGRwyAHzexOeIKQD0hC6Y4z7gq5VOygEJCJlgp98h-SjcAUJaFfE72uJRQaCEW5PenjU2YVV07RJsGeouhq_ww0cb2vW_XtO4i3fj1JkzU-boek79FWofRu_SWXvaDb2ygK993wUa6jtZ5bAfajyEh7W20DQ4Y027M1GPcQn-Hjm4w-LHJxAvyrLYzf_lwHpAvp-8_n5xl55fLDyfvzjMvmVZZJRg46SpbVqu8RAGKFSXXYAGhyIFZpthKAa9qzbWCXOdOoxCICLmzpRMH5HA3t4_djxHTYBqfKgzBttiNyTCV51qVQhb_QwXkggPM9M0_9KYbYzt_5F5xpgWTclavH9S4atCZPs57i5P5W8QMjnfgpw84Pb4zMPcNm7lhs23YXFxdbC9zItslfBrw12PCxu8mL0ShzLePS7Ncnl59vWbXRoo_boGoJg</recordid><startdate>201410</startdate><enddate>201410</enddate><creator>Martin, Lionel</creator><creator>Maître, Xavier</creator><creator>de Rochefort, Ludovic</creator><creator>Sarracanie, Mathieu</creator><creator>Friese, Marlies</creator><creator>Hagot, Pascal</creator><creator>Durand, Emmanuel</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>M7Z</scope><scope>P64</scope><scope>7X8</scope><scope>7QO</scope></search><sort><creationdate>201410</creationdate><title>Phase-contrast velocity mapping for highly diffusive fluids: Optimal bipolar gradient pulse parameters for hyperpolarized helium-3</title><author>Martin, Lionel ; Maître, Xavier ; de Rochefort, Ludovic ; Sarracanie, Mathieu ; Friese, Marlies ; Hagot, Pascal ; Durand, Emmanuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i4185-c310d4dca9cb69e305179280a0e07601a151b502cf82850686d8e33eee06da9d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>airflow velocity</topic><topic>Algorithms</topic><topic>Contrast Media - analysis</topic><topic>Contrast Media - chemistry</topic><topic>Diffusion</topic><topic>flow</topic><topic>gas</topic><topic>Helium - analysis</topic><topic>Helium - chemistry</topic><topic>hyperpolarized helium-3</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Isotopes - analysis</topic><topic>Isotopes - chemistry</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>phase-contrast</topic><topic>phase-contrast MRI</topic><topic>Radiopharmaceuticals - analysis</topic><topic>Radiopharmaceuticals - chemistry</topic><topic>Reproducibility of Results</topic><topic>Rheology - methods</topic><topic>Sensitivity and Specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martin, Lionel</creatorcontrib><creatorcontrib>Maître, Xavier</creatorcontrib><creatorcontrib>de Rochefort, Ludovic</creatorcontrib><creatorcontrib>Sarracanie, Mathieu</creatorcontrib><creatorcontrib>Friese, Marlies</creatorcontrib><creatorcontrib>Hagot, Pascal</creatorcontrib><creatorcontrib>Durand, Emmanuel</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biochemistry Abstracts 1</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><jtitle>Magnetic resonance in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martin, Lionel</au><au>Maître, Xavier</au><au>de Rochefort, Ludovic</au><au>Sarracanie, Mathieu</au><au>Friese, Marlies</au><au>Hagot, Pascal</au><au>Durand, Emmanuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phase-contrast velocity mapping for highly diffusive fluids: Optimal bipolar gradient pulse parameters for hyperpolarized helium-3</atitle><jtitle>Magnetic resonance in medicine</jtitle><addtitle>Magn. Reson. Med</addtitle><date>2014-10</date><risdate>2014</risdate><volume>72</volume><issue>4</issue><spage>1072</spage><epage>1078</epage><pages>1072-1078</pages><issn>0740-3194</issn><eissn>1522-2594</eissn><coden>MRMEEN</coden><abstract>Purpose
In MR‐velocity phase‐contrast measurements, increasing the encoding bipolar gradient, i.e., decreasing the field of speed, usually improves measurement precision. However, in gases, fast diffusion during the bipolar gradient pulses may dramatically decrease the signal‐to‐noise ratio, thus degrading measurement precision. These two effects are contradictory. This work aims at determining the optimal sequence parameters to improve the velocity measurement precision.
Theory and Methods
This work presents the theoretical optimization of bipolar gradient parameters (duration and amplitude) to improve velocity measurement precision. An analytical approximation is given as well as a numerical optimization. It is shown that the solution depends on the diffusion coefficient and T2*. Experimental validation using hyperpolarized 3He diluted in various buffer gases (4He, N2, and SF6) is presented at 1.5 Tesla (T) in a straight pipe.
Results
Excellent agreement was found with the theoretical results for prediction of optimal field of speed and good agreement was found for the precision in measured velocity, but for SF6 buffered gas.
Conclusion
The theoretical predictions were validated, providing a way to optimize velocity mapping in gases. Magn Reson Med 72:1072–1078, 2014. © 2013 Wiley Periodicals, Inc.</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>24407833</pmid><doi>10.1002/mrm.25005</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0740-3194 |
ispartof | Magnetic resonance in medicine, 2014-10, Vol.72 (4), p.1072-1078 |
issn | 0740-3194 1522-2594 |
language | eng |
recordid | cdi_proquest_miscellaneous_1566859347 |
source | Wiley Online Library - AutoHoldings Journals; MEDLINE; Wiley Online Library Free Content |
subjects | airflow velocity Algorithms Contrast Media - analysis Contrast Media - chemistry Diffusion flow gas Helium - analysis Helium - chemistry hyperpolarized helium-3 Image Interpretation, Computer-Assisted - methods Isotopes - analysis Isotopes - chemistry Magnetic Resonance Imaging - methods phase-contrast phase-contrast MRI Radiopharmaceuticals - analysis Radiopharmaceuticals - chemistry Reproducibility of Results Rheology - methods Sensitivity and Specificity |
title | Phase-contrast velocity mapping for highly diffusive fluids: Optimal bipolar gradient pulse parameters for hyperpolarized helium-3 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T20%3A39%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phase-contrast%20velocity%20mapping%20for%20highly%20diffusive%20fluids:%20Optimal%20bipolar%20gradient%20pulse%20parameters%20for%20hyperpolarized%20helium-3&rft.jtitle=Magnetic%20resonance%20in%20medicine&rft.au=Martin,%20Lionel&rft.date=2014-10&rft.volume=72&rft.issue=4&rft.spage=1072&rft.epage=1078&rft.pages=1072-1078&rft.issn=0740-3194&rft.eissn=1522-2594&rft.coden=MRMEEN&rft_id=info:doi/10.1002/mrm.25005&rft_dat=%3Cproquest_pubme%3E3433252171%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1562183144&rft_id=info:pmid/24407833&rfr_iscdi=true |