Phase-contrast velocity mapping for highly diffusive fluids: Optimal bipolar gradient pulse parameters for hyperpolarized helium-3

Purpose In MR‐velocity phase‐contrast measurements, increasing the encoding bipolar gradient, i.e., decreasing the field of speed, usually improves measurement precision. However, in gases, fast diffusion during the bipolar gradient pulses may dramatically decrease the signal‐to‐noise ratio, thus de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Magnetic resonance in medicine 2014-10, Vol.72 (4), p.1072-1078
Hauptverfasser: Martin, Lionel, Maître, Xavier, de Rochefort, Ludovic, Sarracanie, Mathieu, Friese, Marlies, Hagot, Pascal, Durand, Emmanuel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1078
container_issue 4
container_start_page 1072
container_title Magnetic resonance in medicine
container_volume 72
creator Martin, Lionel
Maître, Xavier
de Rochefort, Ludovic
Sarracanie, Mathieu
Friese, Marlies
Hagot, Pascal
Durand, Emmanuel
description Purpose In MR‐velocity phase‐contrast measurements, increasing the encoding bipolar gradient, i.e., decreasing the field of speed, usually improves measurement precision. However, in gases, fast diffusion during the bipolar gradient pulses may dramatically decrease the signal‐to‐noise ratio, thus degrading measurement precision. These two effects are contradictory. This work aims at determining the optimal sequence parameters to improve the velocity measurement precision. Theory and Methods This work presents the theoretical optimization of bipolar gradient parameters (duration and amplitude) to improve velocity measurement precision. An analytical approximation is given as well as a numerical optimization. It is shown that the solution depends on the diffusion coefficient and T2*. Experimental validation using hyperpolarized 3He diluted in various buffer gases (4He, N2, and SF6) is presented at 1.5 Tesla (T) in a straight pipe. Results Excellent agreement was found with the theoretical results for prediction of optimal field of speed and good agreement was found for the precision in measured velocity, but for SF6 buffered gas. Conclusion The theoretical predictions were validated, providing a way to optimize velocity mapping in gases. Magn Reson Med 72:1072–1078, 2014. © 2013 Wiley Periodicals, Inc.
doi_str_mv 10.1002/mrm.25005
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1566859347</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3433252171</sourcerecordid><originalsourceid>FETCH-LOGICAL-i4185-c310d4dca9cb69e305179280a0e07601a151b502cf82850686d8e33eee06da9d3</originalsourceid><addsrcrecordid>eNqN0ctu1DAUBmALgei0sOAFkCU23aQ9viUOO1TRKVJLUcWlO8sTn8y4OBfspJAueXLSmdIFK1a25O8_ks9PyCsGRwyAHzexOeIKQD0hC6Y4z7gq5VOygEJCJlgp98h-SjcAUJaFfE72uJRQaCEW5PenjU2YVV07RJsGeouhq_ww0cb2vW_XtO4i3fj1JkzU-boek79FWofRu_SWXvaDb2ygK993wUa6jtZ5bAfajyEh7W20DQ4Y027M1GPcQn-Hjm4w-LHJxAvyrLYzf_lwHpAvp-8_n5xl55fLDyfvzjMvmVZZJRg46SpbVqu8RAGKFSXXYAGhyIFZpthKAa9qzbWCXOdOoxCICLmzpRMH5HA3t4_djxHTYBqfKgzBttiNyTCV51qVQhb_QwXkggPM9M0_9KYbYzt_5F5xpgWTclavH9S4atCZPs57i5P5W8QMjnfgpw84Pb4zMPcNm7lhs23YXFxdbC9zItslfBrw12PCxu8mL0ShzLePS7Ncnl59vWbXRoo_boGoJg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1562183144</pqid></control><display><type>article</type><title>Phase-contrast velocity mapping for highly diffusive fluids: Optimal bipolar gradient pulse parameters for hyperpolarized helium-3</title><source>Wiley Online Library - AutoHoldings Journals</source><source>MEDLINE</source><source>Wiley Online Library Free Content</source><creator>Martin, Lionel ; Maître, Xavier ; de Rochefort, Ludovic ; Sarracanie, Mathieu ; Friese, Marlies ; Hagot, Pascal ; Durand, Emmanuel</creator><creatorcontrib>Martin, Lionel ; Maître, Xavier ; de Rochefort, Ludovic ; Sarracanie, Mathieu ; Friese, Marlies ; Hagot, Pascal ; Durand, Emmanuel</creatorcontrib><description>Purpose In MR‐velocity phase‐contrast measurements, increasing the encoding bipolar gradient, i.e., decreasing the field of speed, usually improves measurement precision. However, in gases, fast diffusion during the bipolar gradient pulses may dramatically decrease the signal‐to‐noise ratio, thus degrading measurement precision. These two effects are contradictory. This work aims at determining the optimal sequence parameters to improve the velocity measurement precision. Theory and Methods This work presents the theoretical optimization of bipolar gradient parameters (duration and amplitude) to improve velocity measurement precision. An analytical approximation is given as well as a numerical optimization. It is shown that the solution depends on the diffusion coefficient and T2*. Experimental validation using hyperpolarized 3He diluted in various buffer gases (4He, N2, and SF6) is presented at 1.5 Tesla (T) in a straight pipe. Results Excellent agreement was found with the theoretical results for prediction of optimal field of speed and good agreement was found for the precision in measured velocity, but for SF6 buffered gas. Conclusion The theoretical predictions were validated, providing a way to optimize velocity mapping in gases. Magn Reson Med 72:1072–1078, 2014. © 2013 Wiley Periodicals, Inc.</description><identifier>ISSN: 0740-3194</identifier><identifier>EISSN: 1522-2594</identifier><identifier>DOI: 10.1002/mrm.25005</identifier><identifier>PMID: 24407833</identifier><identifier>CODEN: MRMEEN</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>airflow velocity ; Algorithms ; Contrast Media - analysis ; Contrast Media - chemistry ; Diffusion ; flow ; gas ; Helium - analysis ; Helium - chemistry ; hyperpolarized helium-3 ; Image Interpretation, Computer-Assisted - methods ; Isotopes - analysis ; Isotopes - chemistry ; Magnetic Resonance Imaging - methods ; phase-contrast ; phase-contrast MRI ; Radiopharmaceuticals - analysis ; Radiopharmaceuticals - chemistry ; Reproducibility of Results ; Rheology - methods ; Sensitivity and Specificity</subject><ispartof>Magnetic resonance in medicine, 2014-10, Vol.72 (4), p.1072-1078</ispartof><rights>Copyright © 2013 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmrm.25005$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmrm.25005$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,1432,27915,27916,45565,45566,46400,46824</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24407833$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Martin, Lionel</creatorcontrib><creatorcontrib>Maître, Xavier</creatorcontrib><creatorcontrib>de Rochefort, Ludovic</creatorcontrib><creatorcontrib>Sarracanie, Mathieu</creatorcontrib><creatorcontrib>Friese, Marlies</creatorcontrib><creatorcontrib>Hagot, Pascal</creatorcontrib><creatorcontrib>Durand, Emmanuel</creatorcontrib><title>Phase-contrast velocity mapping for highly diffusive fluids: Optimal bipolar gradient pulse parameters for hyperpolarized helium-3</title><title>Magnetic resonance in medicine</title><addtitle>Magn. Reson. Med</addtitle><description>Purpose In MR‐velocity phase‐contrast measurements, increasing the encoding bipolar gradient, i.e., decreasing the field of speed, usually improves measurement precision. However, in gases, fast diffusion during the bipolar gradient pulses may dramatically decrease the signal‐to‐noise ratio, thus degrading measurement precision. These two effects are contradictory. This work aims at determining the optimal sequence parameters to improve the velocity measurement precision. Theory and Methods This work presents the theoretical optimization of bipolar gradient parameters (duration and amplitude) to improve velocity measurement precision. An analytical approximation is given as well as a numerical optimization. It is shown that the solution depends on the diffusion coefficient and T2*. Experimental validation using hyperpolarized 3He diluted in various buffer gases (4He, N2, and SF6) is presented at 1.5 Tesla (T) in a straight pipe. Results Excellent agreement was found with the theoretical results for prediction of optimal field of speed and good agreement was found for the precision in measured velocity, but for SF6 buffered gas. Conclusion The theoretical predictions were validated, providing a way to optimize velocity mapping in gases. Magn Reson Med 72:1072–1078, 2014. © 2013 Wiley Periodicals, Inc.</description><subject>airflow velocity</subject><subject>Algorithms</subject><subject>Contrast Media - analysis</subject><subject>Contrast Media - chemistry</subject><subject>Diffusion</subject><subject>flow</subject><subject>gas</subject><subject>Helium - analysis</subject><subject>Helium - chemistry</subject><subject>hyperpolarized helium-3</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Isotopes - analysis</subject><subject>Isotopes - chemistry</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>phase-contrast</subject><subject>phase-contrast MRI</subject><subject>Radiopharmaceuticals - analysis</subject><subject>Radiopharmaceuticals - chemistry</subject><subject>Reproducibility of Results</subject><subject>Rheology - methods</subject><subject>Sensitivity and Specificity</subject><issn>0740-3194</issn><issn>1522-2594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqN0ctu1DAUBmALgei0sOAFkCU23aQ9viUOO1TRKVJLUcWlO8sTn8y4OBfspJAueXLSmdIFK1a25O8_ks9PyCsGRwyAHzexOeIKQD0hC6Y4z7gq5VOygEJCJlgp98h-SjcAUJaFfE72uJRQaCEW5PenjU2YVV07RJsGeouhq_ww0cb2vW_XtO4i3fj1JkzU-boek79FWofRu_SWXvaDb2ygK993wUa6jtZ5bAfajyEh7W20DQ4Y027M1GPcQn-Hjm4w-LHJxAvyrLYzf_lwHpAvp-8_n5xl55fLDyfvzjMvmVZZJRg46SpbVqu8RAGKFSXXYAGhyIFZpthKAa9qzbWCXOdOoxCICLmzpRMH5HA3t4_djxHTYBqfKgzBttiNyTCV51qVQhb_QwXkggPM9M0_9KYbYzt_5F5xpgWTclavH9S4atCZPs57i5P5W8QMjnfgpw84Pb4zMPcNm7lhs23YXFxdbC9zItslfBrw12PCxu8mL0ShzLePS7Ncnl59vWbXRoo_boGoJg</recordid><startdate>201410</startdate><enddate>201410</enddate><creator>Martin, Lionel</creator><creator>Maître, Xavier</creator><creator>de Rochefort, Ludovic</creator><creator>Sarracanie, Mathieu</creator><creator>Friese, Marlies</creator><creator>Hagot, Pascal</creator><creator>Durand, Emmanuel</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>M7Z</scope><scope>P64</scope><scope>7X8</scope><scope>7QO</scope></search><sort><creationdate>201410</creationdate><title>Phase-contrast velocity mapping for highly diffusive fluids: Optimal bipolar gradient pulse parameters for hyperpolarized helium-3</title><author>Martin, Lionel ; Maître, Xavier ; de Rochefort, Ludovic ; Sarracanie, Mathieu ; Friese, Marlies ; Hagot, Pascal ; Durand, Emmanuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i4185-c310d4dca9cb69e305179280a0e07601a151b502cf82850686d8e33eee06da9d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>airflow velocity</topic><topic>Algorithms</topic><topic>Contrast Media - analysis</topic><topic>Contrast Media - chemistry</topic><topic>Diffusion</topic><topic>flow</topic><topic>gas</topic><topic>Helium - analysis</topic><topic>Helium - chemistry</topic><topic>hyperpolarized helium-3</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Isotopes - analysis</topic><topic>Isotopes - chemistry</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>phase-contrast</topic><topic>phase-contrast MRI</topic><topic>Radiopharmaceuticals - analysis</topic><topic>Radiopharmaceuticals - chemistry</topic><topic>Reproducibility of Results</topic><topic>Rheology - methods</topic><topic>Sensitivity and Specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martin, Lionel</creatorcontrib><creatorcontrib>Maître, Xavier</creatorcontrib><creatorcontrib>de Rochefort, Ludovic</creatorcontrib><creatorcontrib>Sarracanie, Mathieu</creatorcontrib><creatorcontrib>Friese, Marlies</creatorcontrib><creatorcontrib>Hagot, Pascal</creatorcontrib><creatorcontrib>Durand, Emmanuel</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biochemistry Abstracts 1</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><jtitle>Magnetic resonance in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martin, Lionel</au><au>Maître, Xavier</au><au>de Rochefort, Ludovic</au><au>Sarracanie, Mathieu</au><au>Friese, Marlies</au><au>Hagot, Pascal</au><au>Durand, Emmanuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phase-contrast velocity mapping for highly diffusive fluids: Optimal bipolar gradient pulse parameters for hyperpolarized helium-3</atitle><jtitle>Magnetic resonance in medicine</jtitle><addtitle>Magn. Reson. Med</addtitle><date>2014-10</date><risdate>2014</risdate><volume>72</volume><issue>4</issue><spage>1072</spage><epage>1078</epage><pages>1072-1078</pages><issn>0740-3194</issn><eissn>1522-2594</eissn><coden>MRMEEN</coden><abstract>Purpose In MR‐velocity phase‐contrast measurements, increasing the encoding bipolar gradient, i.e., decreasing the field of speed, usually improves measurement precision. However, in gases, fast diffusion during the bipolar gradient pulses may dramatically decrease the signal‐to‐noise ratio, thus degrading measurement precision. These two effects are contradictory. This work aims at determining the optimal sequence parameters to improve the velocity measurement precision. Theory and Methods This work presents the theoretical optimization of bipolar gradient parameters (duration and amplitude) to improve velocity measurement precision. An analytical approximation is given as well as a numerical optimization. It is shown that the solution depends on the diffusion coefficient and T2*. Experimental validation using hyperpolarized 3He diluted in various buffer gases (4He, N2, and SF6) is presented at 1.5 Tesla (T) in a straight pipe. Results Excellent agreement was found with the theoretical results for prediction of optimal field of speed and good agreement was found for the precision in measured velocity, but for SF6 buffered gas. Conclusion The theoretical predictions were validated, providing a way to optimize velocity mapping in gases. Magn Reson Med 72:1072–1078, 2014. © 2013 Wiley Periodicals, Inc.</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>24407833</pmid><doi>10.1002/mrm.25005</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0740-3194
ispartof Magnetic resonance in medicine, 2014-10, Vol.72 (4), p.1072-1078
issn 0740-3194
1522-2594
language eng
recordid cdi_proquest_miscellaneous_1566859347
source Wiley Online Library - AutoHoldings Journals; MEDLINE; Wiley Online Library Free Content
subjects airflow velocity
Algorithms
Contrast Media - analysis
Contrast Media - chemistry
Diffusion
flow
gas
Helium - analysis
Helium - chemistry
hyperpolarized helium-3
Image Interpretation, Computer-Assisted - methods
Isotopes - analysis
Isotopes - chemistry
Magnetic Resonance Imaging - methods
phase-contrast
phase-contrast MRI
Radiopharmaceuticals - analysis
Radiopharmaceuticals - chemistry
Reproducibility of Results
Rheology - methods
Sensitivity and Specificity
title Phase-contrast velocity mapping for highly diffusive fluids: Optimal bipolar gradient pulse parameters for hyperpolarized helium-3
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T20%3A39%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phase-contrast%20velocity%20mapping%20for%20highly%20diffusive%20fluids:%20Optimal%20bipolar%20gradient%20pulse%20parameters%20for%20hyperpolarized%20helium-3&rft.jtitle=Magnetic%20resonance%20in%20medicine&rft.au=Martin,%20Lionel&rft.date=2014-10&rft.volume=72&rft.issue=4&rft.spage=1072&rft.epage=1078&rft.pages=1072-1078&rft.issn=0740-3194&rft.eissn=1522-2594&rft.coden=MRMEEN&rft_id=info:doi/10.1002/mrm.25005&rft_dat=%3Cproquest_pubme%3E3433252171%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1562183144&rft_id=info:pmid/24407833&rfr_iscdi=true