Migration Linked to FUCCI-Indicated Cell Cycle Is Controlled by PTH and Mechanical Stress
Bone metabolism is maintained via balanced repetition of bone resorption by osteoclasts and bone formation by osteoblasts. Osteoblastic cells are capable of conducting self‐renewal and differentiation that are basically associated with cell‐cycle transition to enable cell specification and bone form...
Gespeichert in:
Veröffentlicht in: | Journal of cellular physiology 2014-10, Vol.229 (10), p.1353-1358 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1358 |
---|---|
container_issue | 10 |
container_start_page | 1353 |
container_title | Journal of cellular physiology |
container_volume | 229 |
creator | Shirakawa, Jumpei Ezura, Yoichi Moriya, Shuichi Kawasaki, Makiri Yamada, Takayuki Notomi, Takuya Nakamoto, Tetsuya Hayata, Tadayoshi Miyawaki, Atsushi Omura, Ken Noda, Masaki |
description | Bone metabolism is maintained via balanced repetition of bone resorption by osteoclasts and bone formation by osteoblasts. Osteoblastic cells are capable of conducting self‐renewal and differentiation that are basically associated with cell‐cycle transition to enable cell specification and bone formation. Osteoblasts are also migrating to fill the resorption cavity curved by osteoclasts during bone remodeling to maintain homeostasis of bone mass whose imbalance leads to osteoporosis. However, technical difficulties have hampered the research on the dynamic relationship between cell cycle and migration in osteoblasts. In this report, we overcome these problems by introducing fluorescent ubiquitination‐based cell cycle indicator (FUCCI) reporter system in calvarial osteoblastic cells and reveal that the cells in G1 as well as S/G2/M phase are migrating. Furthermore, the osteoblastic cells in S/G2/M phase migrate faster than those in G1 phase. Interestingly, parathyroid hormone (PTH) as an anabolic agent enhances migration velocity of the cells. Mechanical stress, another anabolic signal, also enhances migration velocity. In contrast, in the presence of both PTH and mechanical stress, the migration velocity returns to the base line levels revealing the interaction between the two anabolic stimuli in the regulation of cell migration. Importantly, PTH and mechanical stress also interact when they regulate the transition of cell cycle. These data demonstrate that osteoblastic migration is linked to cell cycle and it is under the control of mechanical and chemical stimuli that coordinate to regulate bone mass. J. Cell. Physiol. 229: 1353–1358, 2014. © 2014 Wiley Periodicals, Inc. |
doi_str_mv | 10.1002/jcp.24605 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1566853342</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1566853342</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4905-e736f74727667f1280a3bdb7c9d9b456b291372aaf210e3489a5c67c1e7af6703</originalsourceid><addsrcrecordid>eNqNkU1LAzEQhoMoWqsH_4AEvOhhNd9pjrLYD2lVsCKeQjab1a3b3Zps0f57o1UPguBpYOZ5X2bmBeAAo1OMEDmb2cUpYQLxDdDBSMmECU42QSfOcKI4wztgN4QZQkgpSrfBzgfMhOh1wMOkfPSmLZsajsv62eWwbWD_Lk1HyajOS2va2EpdVcF0ZSsHRwGmTd36pqriIFvBm-kQmjqHE2efTB0FFbxtvQthD2wVpgpu_6t2wV3_YpoOk_H1YJSejxPLFOKJk1QUkkkihZAFJj1kaJZn0qpcZYyLjChMJTGmIBg5ynrKcCukxU6aQkhEu-B47bvwzcvShVbPy2DjxqZ2zTJozOOhnFJG_oEyghCVlEb06Bc6a5a-jodEilPMRPxfpE7WlPVNCN4VeuHLufErjZH-iEbHaPRnNJE9_HJcZnOX_5DfWUTgbA28lpVb_e2kL9Obb8tkrShD695-FMY_ayGp5Pr-aqCntCfxcNjXE_oO7dOizQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1553146466</pqid></control><display><type>article</type><title>Migration Linked to FUCCI-Indicated Cell Cycle Is Controlled by PTH and Mechanical Stress</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Shirakawa, Jumpei ; Ezura, Yoichi ; Moriya, Shuichi ; Kawasaki, Makiri ; Yamada, Takayuki ; Notomi, Takuya ; Nakamoto, Tetsuya ; Hayata, Tadayoshi ; Miyawaki, Atsushi ; Omura, Ken ; Noda, Masaki</creator><creatorcontrib>Shirakawa, Jumpei ; Ezura, Yoichi ; Moriya, Shuichi ; Kawasaki, Makiri ; Yamada, Takayuki ; Notomi, Takuya ; Nakamoto, Tetsuya ; Hayata, Tadayoshi ; Miyawaki, Atsushi ; Omura, Ken ; Noda, Masaki</creatorcontrib><description>Bone metabolism is maintained via balanced repetition of bone resorption by osteoclasts and bone formation by osteoblasts. Osteoblastic cells are capable of conducting self‐renewal and differentiation that are basically associated with cell‐cycle transition to enable cell specification and bone formation. Osteoblasts are also migrating to fill the resorption cavity curved by osteoclasts during bone remodeling to maintain homeostasis of bone mass whose imbalance leads to osteoporosis. However, technical difficulties have hampered the research on the dynamic relationship between cell cycle and migration in osteoblasts. In this report, we overcome these problems by introducing fluorescent ubiquitination‐based cell cycle indicator (FUCCI) reporter system in calvarial osteoblastic cells and reveal that the cells in G1 as well as S/G2/M phase are migrating. Furthermore, the osteoblastic cells in S/G2/M phase migrate faster than those in G1 phase. Interestingly, parathyroid hormone (PTH) as an anabolic agent enhances migration velocity of the cells. Mechanical stress, another anabolic signal, also enhances migration velocity. In contrast, in the presence of both PTH and mechanical stress, the migration velocity returns to the base line levels revealing the interaction between the two anabolic stimuli in the regulation of cell migration. Importantly, PTH and mechanical stress also interact when they regulate the transition of cell cycle. These data demonstrate that osteoblastic migration is linked to cell cycle and it is under the control of mechanical and chemical stimuli that coordinate to regulate bone mass. J. Cell. Physiol. 229: 1353–1358, 2014. © 2014 Wiley Periodicals, Inc.</description><identifier>ISSN: 0021-9541</identifier><identifier>EISSN: 1097-4652</identifier><identifier>DOI: 10.1002/jcp.24605</identifier><identifier>PMID: 24604668</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>Animals ; Biosensing Techniques ; Bone Remodeling ; Cell Cycle ; Cell Movement ; Cell Tracking - methods ; Cells, Cultured ; Genes, Reporter ; Luminescent Proteins - biosynthesis ; Luminescent Proteins - genetics ; Mechanotransduction, Cellular ; Mice ; Mice, Transgenic ; Osteoblasts - metabolism ; Osteoporosis ; Parathyroid Hormone - metabolism ; Stress, Mechanical ; Time Factors</subject><ispartof>Journal of cellular physiology, 2014-10, Vol.229 (10), p.1353-1358</ispartof><rights>2014 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4905-e736f74727667f1280a3bdb7c9d9b456b291372aaf210e3489a5c67c1e7af6703</citedby><cites>FETCH-LOGICAL-c4905-e736f74727667f1280a3bdb7c9d9b456b291372aaf210e3489a5c67c1e7af6703</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjcp.24605$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjcp.24605$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24604668$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shirakawa, Jumpei</creatorcontrib><creatorcontrib>Ezura, Yoichi</creatorcontrib><creatorcontrib>Moriya, Shuichi</creatorcontrib><creatorcontrib>Kawasaki, Makiri</creatorcontrib><creatorcontrib>Yamada, Takayuki</creatorcontrib><creatorcontrib>Notomi, Takuya</creatorcontrib><creatorcontrib>Nakamoto, Tetsuya</creatorcontrib><creatorcontrib>Hayata, Tadayoshi</creatorcontrib><creatorcontrib>Miyawaki, Atsushi</creatorcontrib><creatorcontrib>Omura, Ken</creatorcontrib><creatorcontrib>Noda, Masaki</creatorcontrib><title>Migration Linked to FUCCI-Indicated Cell Cycle Is Controlled by PTH and Mechanical Stress</title><title>Journal of cellular physiology</title><addtitle>J. Cell. Physiol</addtitle><description>Bone metabolism is maintained via balanced repetition of bone resorption by osteoclasts and bone formation by osteoblasts. Osteoblastic cells are capable of conducting self‐renewal and differentiation that are basically associated with cell‐cycle transition to enable cell specification and bone formation. Osteoblasts are also migrating to fill the resorption cavity curved by osteoclasts during bone remodeling to maintain homeostasis of bone mass whose imbalance leads to osteoporosis. However, technical difficulties have hampered the research on the dynamic relationship between cell cycle and migration in osteoblasts. In this report, we overcome these problems by introducing fluorescent ubiquitination‐based cell cycle indicator (FUCCI) reporter system in calvarial osteoblastic cells and reveal that the cells in G1 as well as S/G2/M phase are migrating. Furthermore, the osteoblastic cells in S/G2/M phase migrate faster than those in G1 phase. Interestingly, parathyroid hormone (PTH) as an anabolic agent enhances migration velocity of the cells. Mechanical stress, another anabolic signal, also enhances migration velocity. In contrast, in the presence of both PTH and mechanical stress, the migration velocity returns to the base line levels revealing the interaction between the two anabolic stimuli in the regulation of cell migration. Importantly, PTH and mechanical stress also interact when they regulate the transition of cell cycle. These data demonstrate that osteoblastic migration is linked to cell cycle and it is under the control of mechanical and chemical stimuli that coordinate to regulate bone mass. J. Cell. Physiol. 229: 1353–1358, 2014. © 2014 Wiley Periodicals, Inc.</description><subject>Animals</subject><subject>Biosensing Techniques</subject><subject>Bone Remodeling</subject><subject>Cell Cycle</subject><subject>Cell Movement</subject><subject>Cell Tracking - methods</subject><subject>Cells, Cultured</subject><subject>Genes, Reporter</subject><subject>Luminescent Proteins - biosynthesis</subject><subject>Luminescent Proteins - genetics</subject><subject>Mechanotransduction, Cellular</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Osteoblasts - metabolism</subject><subject>Osteoporosis</subject><subject>Parathyroid Hormone - metabolism</subject><subject>Stress, Mechanical</subject><subject>Time Factors</subject><issn>0021-9541</issn><issn>1097-4652</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU1LAzEQhoMoWqsH_4AEvOhhNd9pjrLYD2lVsCKeQjab1a3b3Zps0f57o1UPguBpYOZ5X2bmBeAAo1OMEDmb2cUpYQLxDdDBSMmECU42QSfOcKI4wztgN4QZQkgpSrfBzgfMhOh1wMOkfPSmLZsajsv62eWwbWD_Lk1HyajOS2va2EpdVcF0ZSsHRwGmTd36pqriIFvBm-kQmjqHE2efTB0FFbxtvQthD2wVpgpu_6t2wV3_YpoOk_H1YJSejxPLFOKJk1QUkkkihZAFJj1kaJZn0qpcZYyLjChMJTGmIBg5ynrKcCukxU6aQkhEu-B47bvwzcvShVbPy2DjxqZ2zTJozOOhnFJG_oEyghCVlEb06Bc6a5a-jodEilPMRPxfpE7WlPVNCN4VeuHLufErjZH-iEbHaPRnNJE9_HJcZnOX_5DfWUTgbA28lpVb_e2kL9Obb8tkrShD695-FMY_ayGp5Pr-aqCntCfxcNjXE_oO7dOizQ</recordid><startdate>201410</startdate><enddate>201410</enddate><creator>Shirakawa, Jumpei</creator><creator>Ezura, Yoichi</creator><creator>Moriya, Shuichi</creator><creator>Kawasaki, Makiri</creator><creator>Yamada, Takayuki</creator><creator>Notomi, Takuya</creator><creator>Nakamoto, Tetsuya</creator><creator>Hayata, Tadayoshi</creator><creator>Miyawaki, Atsushi</creator><creator>Omura, Ken</creator><creator>Noda, Masaki</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>201410</creationdate><title>Migration Linked to FUCCI-Indicated Cell Cycle Is Controlled by PTH and Mechanical Stress</title><author>Shirakawa, Jumpei ; Ezura, Yoichi ; Moriya, Shuichi ; Kawasaki, Makiri ; Yamada, Takayuki ; Notomi, Takuya ; Nakamoto, Tetsuya ; Hayata, Tadayoshi ; Miyawaki, Atsushi ; Omura, Ken ; Noda, Masaki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4905-e736f74727667f1280a3bdb7c9d9b456b291372aaf210e3489a5c67c1e7af6703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animals</topic><topic>Biosensing Techniques</topic><topic>Bone Remodeling</topic><topic>Cell Cycle</topic><topic>Cell Movement</topic><topic>Cell Tracking - methods</topic><topic>Cells, Cultured</topic><topic>Genes, Reporter</topic><topic>Luminescent Proteins - biosynthesis</topic><topic>Luminescent Proteins - genetics</topic><topic>Mechanotransduction, Cellular</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Osteoblasts - metabolism</topic><topic>Osteoporosis</topic><topic>Parathyroid Hormone - metabolism</topic><topic>Stress, Mechanical</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shirakawa, Jumpei</creatorcontrib><creatorcontrib>Ezura, Yoichi</creatorcontrib><creatorcontrib>Moriya, Shuichi</creatorcontrib><creatorcontrib>Kawasaki, Makiri</creatorcontrib><creatorcontrib>Yamada, Takayuki</creatorcontrib><creatorcontrib>Notomi, Takuya</creatorcontrib><creatorcontrib>Nakamoto, Tetsuya</creatorcontrib><creatorcontrib>Hayata, Tadayoshi</creatorcontrib><creatorcontrib>Miyawaki, Atsushi</creatorcontrib><creatorcontrib>Omura, Ken</creatorcontrib><creatorcontrib>Noda, Masaki</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of cellular physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shirakawa, Jumpei</au><au>Ezura, Yoichi</au><au>Moriya, Shuichi</au><au>Kawasaki, Makiri</au><au>Yamada, Takayuki</au><au>Notomi, Takuya</au><au>Nakamoto, Tetsuya</au><au>Hayata, Tadayoshi</au><au>Miyawaki, Atsushi</au><au>Omura, Ken</au><au>Noda, Masaki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Migration Linked to FUCCI-Indicated Cell Cycle Is Controlled by PTH and Mechanical Stress</atitle><jtitle>Journal of cellular physiology</jtitle><addtitle>J. Cell. Physiol</addtitle><date>2014-10</date><risdate>2014</risdate><volume>229</volume><issue>10</issue><spage>1353</spage><epage>1358</epage><pages>1353-1358</pages><issn>0021-9541</issn><eissn>1097-4652</eissn><abstract>Bone metabolism is maintained via balanced repetition of bone resorption by osteoclasts and bone formation by osteoblasts. Osteoblastic cells are capable of conducting self‐renewal and differentiation that are basically associated with cell‐cycle transition to enable cell specification and bone formation. Osteoblasts are also migrating to fill the resorption cavity curved by osteoclasts during bone remodeling to maintain homeostasis of bone mass whose imbalance leads to osteoporosis. However, technical difficulties have hampered the research on the dynamic relationship between cell cycle and migration in osteoblasts. In this report, we overcome these problems by introducing fluorescent ubiquitination‐based cell cycle indicator (FUCCI) reporter system in calvarial osteoblastic cells and reveal that the cells in G1 as well as S/G2/M phase are migrating. Furthermore, the osteoblastic cells in S/G2/M phase migrate faster than those in G1 phase. Interestingly, parathyroid hormone (PTH) as an anabolic agent enhances migration velocity of the cells. Mechanical stress, another anabolic signal, also enhances migration velocity. In contrast, in the presence of both PTH and mechanical stress, the migration velocity returns to the base line levels revealing the interaction between the two anabolic stimuli in the regulation of cell migration. Importantly, PTH and mechanical stress also interact when they regulate the transition of cell cycle. These data demonstrate that osteoblastic migration is linked to cell cycle and it is under the control of mechanical and chemical stimuli that coordinate to regulate bone mass. J. Cell. Physiol. 229: 1353–1358, 2014. © 2014 Wiley Periodicals, Inc.</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>24604668</pmid><doi>10.1002/jcp.24605</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9541 |
ispartof | Journal of cellular physiology, 2014-10, Vol.229 (10), p.1353-1358 |
issn | 0021-9541 1097-4652 |
language | eng |
recordid | cdi_proquest_miscellaneous_1566853342 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Animals Biosensing Techniques Bone Remodeling Cell Cycle Cell Movement Cell Tracking - methods Cells, Cultured Genes, Reporter Luminescent Proteins - biosynthesis Luminescent Proteins - genetics Mechanotransduction, Cellular Mice Mice, Transgenic Osteoblasts - metabolism Osteoporosis Parathyroid Hormone - metabolism Stress, Mechanical Time Factors |
title | Migration Linked to FUCCI-Indicated Cell Cycle Is Controlled by PTH and Mechanical Stress |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T05%3A30%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Migration%20Linked%20to%20FUCCI-Indicated%20Cell%20Cycle%20Is%20Controlled%20by%20PTH%20and%20Mechanical%20Stress&rft.jtitle=Journal%20of%20cellular%20physiology&rft.au=Shirakawa,%20Jumpei&rft.date=2014-10&rft.volume=229&rft.issue=10&rft.spage=1353&rft.epage=1358&rft.pages=1353-1358&rft.issn=0021-9541&rft.eissn=1097-4652&rft_id=info:doi/10.1002/jcp.24605&rft_dat=%3Cproquest_cross%3E1566853342%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1553146466&rft_id=info:pmid/24604668&rfr_iscdi=true |