Malaria Drug Resistance: The Impact of Human Movement and Spatial Heterogeneity
Human habitat connectivity, movement rates, and spatial heterogeneity have tremendous impact on malaria transmission. In this paper, a deterministic system of differential equations for malaria transmission incorporating human movements and the development of drug resistance malaria in an n patch sy...
Gespeichert in:
Veröffentlicht in: | Bulletin of mathematical biology 2014-07, Vol.76 (7), p.1607-1641 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1641 |
---|---|
container_issue | 7 |
container_start_page | 1607 |
container_title | Bulletin of mathematical biology |
container_volume | 76 |
creator | Agusto, F. B. |
description | Human habitat connectivity, movement rates, and spatial heterogeneity have tremendous impact on malaria transmission. In this paper, a deterministic system of differential equations for malaria transmission incorporating human movements and the development of drug resistance malaria in an
n
patch system is presented. The disease-free equilibrium of the model is globally asymptotically stable when the associated reproduction number is less than unity. For a two patch case, the boundary equilibria (drug sensitive-only and drug resistance-only boundary equilibria) when there is no movement between the patches are shown to be locally asymptotically stable when they exist; the co-existence equilibrium is locally asymptotically stable whenever the reproduction number for the drug sensitive malaria is greater than the reproduction number for the resistance malaria. Furthermore, numerical simulations of the connected two patch model (when there is movement between the patches) suggest that co-existence or competitive exclusion of the two strains can occur when the respective reproduction numbers of the two strains exceed unity. With slow movement (or low migration) between the patches, the drug sensitive strain dominates the drug resistance strain. However, with fast movement (or high migration) between the patches, the drug resistance strain dominates the drug sensitive strain. |
doi_str_mv | 10.1007/s11538-014-9970-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1566849509</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1566849509</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-748dc2ad07919e9d0262a5b732bb9c4ca32e40dc488174929362232d8108e1bc3</originalsourceid><addsrcrecordid>eNqNkctqGzEUQEVIqB2nH5BNEWSTzaTSlTQjdRfysiEhkLhrodFcuxPm4Ugzhfx9ZOyWEgh0pYXOPbriEHLK2QVnrPgeOVdCZ4zLzJiCZfkBmXIFkJmcwSGZMmYg0yDZhBzH-MLSjBHmC5mA1MpoKKbk8cE1LtSOXodxTZ8w1nFwnccfdPkL6aLdOD_QfkXnY-s6-tD_xha7gbquos8bN9SuoXMcMPRr7LAe3k7I0co1Eb_uzxn5eXuzvJpn9493i6vL-8xLoYeskLry4Kq0EDdoKgY5OFUWAsrSeOmdAJSs8lJrXkgDRuQAAirNmUZeejEj5zvvJvSvI8bBtnX02DSuw36Mlqs819IoZv4DVSoHoYo8oWcf0Jd-DF36yJZKOq3TGjPCd5QPfYwBV3YT6taFN8uZ3YaxuzA2hbHbMHZr_rY3j2WL1d-JPyUSADsgpqtujeGfpz-1vgPOIpWg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1554958822</pqid></control><display><type>article</type><title>Malaria Drug Resistance: The Impact of Human Movement and Spatial Heterogeneity</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Agusto, F. B.</creator><creatorcontrib>Agusto, F. B.</creatorcontrib><description>Human habitat connectivity, movement rates, and spatial heterogeneity have tremendous impact on malaria transmission. In this paper, a deterministic system of differential equations for malaria transmission incorporating human movements and the development of drug resistance malaria in an
n
patch system is presented. The disease-free equilibrium of the model is globally asymptotically stable when the associated reproduction number is less than unity. For a two patch case, the boundary equilibria (drug sensitive-only and drug resistance-only boundary equilibria) when there is no movement between the patches are shown to be locally asymptotically stable when they exist; the co-existence equilibrium is locally asymptotically stable whenever the reproduction number for the drug sensitive malaria is greater than the reproduction number for the resistance malaria. Furthermore, numerical simulations of the connected two patch model (when there is movement between the patches) suggest that co-existence or competitive exclusion of the two strains can occur when the respective reproduction numbers of the two strains exceed unity. With slow movement (or low migration) between the patches, the drug sensitive strain dominates the drug resistance strain. However, with fast movement (or high migration) between the patches, the drug resistance strain dominates the drug sensitive strain.</description><identifier>ISSN: 0092-8240</identifier><identifier>EISSN: 1522-9602</identifier><identifier>DOI: 10.1007/s11538-014-9970-6</identifier><identifier>PMID: 24859827</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Animals ; Antimalarials - therapeutic use ; Basic Reproduction Number ; Cell Biology ; Computer Simulation ; Culicidae - parasitology ; Drug Resistance - immunology ; Humans ; Life Sciences ; Malaria, Falciparum - drug therapy ; Malaria, Falciparum - immunology ; Malaria, Falciparum - transmission ; Mathematical and Computational Biology ; Mathematics ; Mathematics and Statistics ; Models, Immunological ; Movement ; Original Article ; Plasmodium falciparum - immunology</subject><ispartof>Bulletin of mathematical biology, 2014-07, Vol.76 (7), p.1607-1641</ispartof><rights>Society for Mathematical Biology 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-748dc2ad07919e9d0262a5b732bb9c4ca32e40dc488174929362232d8108e1bc3</citedby><cites>FETCH-LOGICAL-c438t-748dc2ad07919e9d0262a5b732bb9c4ca32e40dc488174929362232d8108e1bc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11538-014-9970-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11538-014-9970-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24859827$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Agusto, F. B.</creatorcontrib><title>Malaria Drug Resistance: The Impact of Human Movement and Spatial Heterogeneity</title><title>Bulletin of mathematical biology</title><addtitle>Bull Math Biol</addtitle><addtitle>Bull Math Biol</addtitle><description>Human habitat connectivity, movement rates, and spatial heterogeneity have tremendous impact on malaria transmission. In this paper, a deterministic system of differential equations for malaria transmission incorporating human movements and the development of drug resistance malaria in an
n
patch system is presented. The disease-free equilibrium of the model is globally asymptotically stable when the associated reproduction number is less than unity. For a two patch case, the boundary equilibria (drug sensitive-only and drug resistance-only boundary equilibria) when there is no movement between the patches are shown to be locally asymptotically stable when they exist; the co-existence equilibrium is locally asymptotically stable whenever the reproduction number for the drug sensitive malaria is greater than the reproduction number for the resistance malaria. Furthermore, numerical simulations of the connected two patch model (when there is movement between the patches) suggest that co-existence or competitive exclusion of the two strains can occur when the respective reproduction numbers of the two strains exceed unity. With slow movement (or low migration) between the patches, the drug sensitive strain dominates the drug resistance strain. However, with fast movement (or high migration) between the patches, the drug resistance strain dominates the drug sensitive strain.</description><subject>Animals</subject><subject>Antimalarials - therapeutic use</subject><subject>Basic Reproduction Number</subject><subject>Cell Biology</subject><subject>Computer Simulation</subject><subject>Culicidae - parasitology</subject><subject>Drug Resistance - immunology</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Malaria, Falciparum - drug therapy</subject><subject>Malaria, Falciparum - immunology</subject><subject>Malaria, Falciparum - transmission</subject><subject>Mathematical and Computational Biology</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Models, Immunological</subject><subject>Movement</subject><subject>Original Article</subject><subject>Plasmodium falciparum - immunology</subject><issn>0092-8240</issn><issn>1522-9602</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkctqGzEUQEVIqB2nH5BNEWSTzaTSlTQjdRfysiEhkLhrodFcuxPm4Ugzhfx9ZOyWEgh0pYXOPbriEHLK2QVnrPgeOVdCZ4zLzJiCZfkBmXIFkJmcwSGZMmYg0yDZhBzH-MLSjBHmC5mA1MpoKKbk8cE1LtSOXodxTZ8w1nFwnccfdPkL6aLdOD_QfkXnY-s6-tD_xha7gbquos8bN9SuoXMcMPRr7LAe3k7I0co1Eb_uzxn5eXuzvJpn9493i6vL-8xLoYeskLry4Kq0EDdoKgY5OFUWAsrSeOmdAJSs8lJrXkgDRuQAAirNmUZeejEj5zvvJvSvI8bBtnX02DSuw36Mlqs819IoZv4DVSoHoYo8oWcf0Jd-DF36yJZKOq3TGjPCd5QPfYwBV3YT6taFN8uZ3YaxuzA2hbHbMHZr_rY3j2WL1d-JPyUSADsgpqtujeGfpz-1vgPOIpWg</recordid><startdate>20140701</startdate><enddate>20140701</enddate><creator>Agusto, F. B.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SS</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>C1K</scope><scope>F1W</scope><scope>H95</scope><scope>H97</scope><scope>L.G</scope><scope>M7N</scope></search><sort><creationdate>20140701</creationdate><title>Malaria Drug Resistance: The Impact of Human Movement and Spatial Heterogeneity</title><author>Agusto, F. B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-748dc2ad07919e9d0262a5b732bb9c4ca32e40dc488174929362232d8108e1bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animals</topic><topic>Antimalarials - therapeutic use</topic><topic>Basic Reproduction Number</topic><topic>Cell Biology</topic><topic>Computer Simulation</topic><topic>Culicidae - parasitology</topic><topic>Drug Resistance - immunology</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Malaria, Falciparum - drug therapy</topic><topic>Malaria, Falciparum - immunology</topic><topic>Malaria, Falciparum - transmission</topic><topic>Mathematical and Computational Biology</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Models, Immunological</topic><topic>Movement</topic><topic>Original Article</topic><topic>Plasmodium falciparum - immunology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Agusto, F. B.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><jtitle>Bulletin of mathematical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Agusto, F. B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Malaria Drug Resistance: The Impact of Human Movement and Spatial Heterogeneity</atitle><jtitle>Bulletin of mathematical biology</jtitle><stitle>Bull Math Biol</stitle><addtitle>Bull Math Biol</addtitle><date>2014-07-01</date><risdate>2014</risdate><volume>76</volume><issue>7</issue><spage>1607</spage><epage>1641</epage><pages>1607-1641</pages><issn>0092-8240</issn><eissn>1522-9602</eissn><abstract>Human habitat connectivity, movement rates, and spatial heterogeneity have tremendous impact on malaria transmission. In this paper, a deterministic system of differential equations for malaria transmission incorporating human movements and the development of drug resistance malaria in an
n
patch system is presented. The disease-free equilibrium of the model is globally asymptotically stable when the associated reproduction number is less than unity. For a two patch case, the boundary equilibria (drug sensitive-only and drug resistance-only boundary equilibria) when there is no movement between the patches are shown to be locally asymptotically stable when they exist; the co-existence equilibrium is locally asymptotically stable whenever the reproduction number for the drug sensitive malaria is greater than the reproduction number for the resistance malaria. Furthermore, numerical simulations of the connected two patch model (when there is movement between the patches) suggest that co-existence or competitive exclusion of the two strains can occur when the respective reproduction numbers of the two strains exceed unity. With slow movement (or low migration) between the patches, the drug sensitive strain dominates the drug resistance strain. However, with fast movement (or high migration) between the patches, the drug resistance strain dominates the drug sensitive strain.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>24859827</pmid><doi>10.1007/s11538-014-9970-6</doi><tpages>35</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0092-8240 |
ispartof | Bulletin of mathematical biology, 2014-07, Vol.76 (7), p.1607-1641 |
issn | 0092-8240 1522-9602 |
language | eng |
recordid | cdi_proquest_miscellaneous_1566849509 |
source | MEDLINE; SpringerNature Journals |
subjects | Animals Antimalarials - therapeutic use Basic Reproduction Number Cell Biology Computer Simulation Culicidae - parasitology Drug Resistance - immunology Humans Life Sciences Malaria, Falciparum - drug therapy Malaria, Falciparum - immunology Malaria, Falciparum - transmission Mathematical and Computational Biology Mathematics Mathematics and Statistics Models, Immunological Movement Original Article Plasmodium falciparum - immunology |
title | Malaria Drug Resistance: The Impact of Human Movement and Spatial Heterogeneity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T02%3A07%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Malaria%20Drug%20Resistance:%20The%20Impact%20of%20Human%20Movement%20and%20Spatial%20Heterogeneity&rft.jtitle=Bulletin%20of%20mathematical%20biology&rft.au=Agusto,%20F.%20B.&rft.date=2014-07-01&rft.volume=76&rft.issue=7&rft.spage=1607&rft.epage=1641&rft.pages=1607-1641&rft.issn=0092-8240&rft.eissn=1522-9602&rft_id=info:doi/10.1007/s11538-014-9970-6&rft_dat=%3Cproquest_cross%3E1566849509%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1554958822&rft_id=info:pmid/24859827&rfr_iscdi=true |