Historical and future black carbon deposition on the three ice caps: Ice core measurements and model simulations from 1850 to 2100

Ice core measurements in conjunction with climate model simulations are of tremendous value when examining anthropogenic and natural aerosol loads and their role in past and future climates. Refractory black carbon (BC) records from the Arctic, the Antarctic, and the Himalayas are analyzed using thr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Atmospheres 2013-07, Vol.118 (14), p.7948-7961
Hauptverfasser: Bauer, Susanne E., Bausch, Alexandra, Nazarenko, Larissa, Tsigaridis, Kostas, Xu, Baiqing, Edwards, Ross, Bisiaux, Marion, McConnell, Joe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7961
container_issue 14
container_start_page 7948
container_title Journal of geophysical research. Atmospheres
container_volume 118
creator Bauer, Susanne E.
Bausch, Alexandra
Nazarenko, Larissa
Tsigaridis, Kostas
Xu, Baiqing
Edwards, Ross
Bisiaux, Marion
McConnell, Joe
description Ice core measurements in conjunction with climate model simulations are of tremendous value when examining anthropogenic and natural aerosol loads and their role in past and future climates. Refractory black carbon (BC) records from the Arctic, the Antarctic, and the Himalayas are analyzed using three transient climate simulations performed with the Goddard Institute for Space Studies ModelE. Simulations differ in aerosol schemes (bulk aerosols vs. aerosol microphysics) and ocean couplings (fully coupled vs. prescribed ocean). Regional analyses for past (1850–2005) and future (2005–2100) carbonaceous aerosol simulations focus on the Antarctic, Greenland, and the Himalayas. Measurements from locations in the Antarctic show clean conditions with no detectable trend over the past 150 years. Historical atmospheric deposition of BC and sulfur in Greenland shows strong trends and is primarily influenced by emissions from early twentieth century agricultural and domestic practices. Models fail to reproduce observations of a sharp eightfold BC increase in Greenland at the beginning of the twentieth century that could be due to the only threefold increase in the North American emission inventory. BC deposition in Greenland is about 10 times greater than in Antarctica and 10 times less than in Tibet. The Himalayas show the most complicated transport patterns, due to the complex terrain and dynamical regimes of this region. Projections of future climate based on the four CMIP5 Representative Concentration Pathways indicate further dramatic advances of pollution to the Tibetan Plateau along with decreasing BC deposition fluxes in Greenland and the Antarctic. Key Points BC residence times of about 4 days seems realistic Models fail to reproduce the sharp 8‐fold observed BC increase Further dramatic increase of pollution reaching the Tibetan plateau predicted
doi_str_mv 10.1002/jgrd.50612
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1566847070</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1566847070</sourcerecordid><originalsourceid>FETCH-LOGICAL-a5552-d1acd0cfd77d51f9a2755334dfb030014898e0047a0e850bce6ca89000f609d33</originalsourceid><addsrcrecordid>eNp9kUFrFDEYhgexYGl78RcERBBh6pdkMsl4k65uW0qFoli8hGzyjWY7M9kmM2iv_eVmunUPPTRMmO_wvE8S3qJ4TeGYArAP61_RHQuoKXtR7DNaN6VqmvrlbpbXr4qjlNaQlwJeiWq_uD_1aQzRW9MRMzjSTuMUkaw6Y2-INXEVBuJwE5IffR7zN_7GvCMi8RYzskkfydk8hZzr0aSc73EY04OvDw47knw_dWY2JNLG0BOqBJAxEJYvfljstaZLePT4Pyi-f_n87eS0vPi6PDv5dFEaIQQrHTXWgW2dlE7QtjFMCsF55doVcABaqUYhQCUNYLavLNbWqCa_ta2hcZwfFO-23k0MtxOmUfc-Wew6M2CYkqairlUlQUJG3zxB12GKQ76dZpRLAVxx8RxF60xUVMDser-lbAwpRWz1JvrexDtNQc-96bk3_dBbht8-Kk3KlbTRDNanXYJJyTio-Wi65f74Du-eMerz5dXiv7vcZnLj-HeXMfFG1zI_Sv-4XOqrxUJdw8-FZvwfsHmz_Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1638341500</pqid></control><display><type>article</type><title>Historical and future black carbon deposition on the three ice caps: Ice core measurements and model simulations from 1850 to 2100</title><source>Access via Wiley Online Library</source><source>Wiley Online Library (Open Access Collection)</source><source>Alma/SFX Local Collection</source><creator>Bauer, Susanne E. ; Bausch, Alexandra ; Nazarenko, Larissa ; Tsigaridis, Kostas ; Xu, Baiqing ; Edwards, Ross ; Bisiaux, Marion ; McConnell, Joe</creator><creatorcontrib>Bauer, Susanne E. ; Bausch, Alexandra ; Nazarenko, Larissa ; Tsigaridis, Kostas ; Xu, Baiqing ; Edwards, Ross ; Bisiaux, Marion ; McConnell, Joe</creatorcontrib><description>Ice core measurements in conjunction with climate model simulations are of tremendous value when examining anthropogenic and natural aerosol loads and their role in past and future climates. Refractory black carbon (BC) records from the Arctic, the Antarctic, and the Himalayas are analyzed using three transient climate simulations performed with the Goddard Institute for Space Studies ModelE. Simulations differ in aerosol schemes (bulk aerosols vs. aerosol microphysics) and ocean couplings (fully coupled vs. prescribed ocean). Regional analyses for past (1850–2005) and future (2005–2100) carbonaceous aerosol simulations focus on the Antarctic, Greenland, and the Himalayas. Measurements from locations in the Antarctic show clean conditions with no detectable trend over the past 150 years. Historical atmospheric deposition of BC and sulfur in Greenland shows strong trends and is primarily influenced by emissions from early twentieth century agricultural and domestic practices. Models fail to reproduce observations of a sharp eightfold BC increase in Greenland at the beginning of the twentieth century that could be due to the only threefold increase in the North American emission inventory. BC deposition in Greenland is about 10 times greater than in Antarctica and 10 times less than in Tibet. The Himalayas show the most complicated transport patterns, due to the complex terrain and dynamical regimes of this region. Projections of future climate based on the four CMIP5 Representative Concentration Pathways indicate further dramatic advances of pollution to the Tibetan Plateau along with decreasing BC deposition fluxes in Greenland and the Antarctic. Key Points BC residence times of about 4 days seems realistic Models fail to reproduce the sharp 8‐fold observed BC increase Further dramatic increase of pollution reaching the Tibetan plateau predicted</description><identifier>ISSN: 2169-897X</identifier><identifier>EISSN: 2169-8996</identifier><identifier>DOI: 10.1002/jgrd.50612</identifier><language>eng</language><publisher>Hoboken, NJ: Blackwell Publishing Ltd</publisher><subject>20th century ; aerosol ; Aerosols ; Agricultural practices ; Antarctica ; Anthropogenic factors ; Atmospheric models ; Atmospheric pollution deposition ; Black carbon ; Carbon ; Climate ; Climate models ; Computer simulation ; Connectors ; Couplings ; Deposition ; Earth, ocean, space ; Emission inventories ; Exact sciences and technology ; External geophysics ; Fluxes ; Future climates ; Geophysics ; Himalayas ; Human influences ; Ice caps ; Ice cores ; Marine ; Meteorology ; Microphysics ; Oceans ; Regional analysis ; Simulation ; Sulfur ; Sulphur</subject><ispartof>Journal of geophysical research. Atmospheres, 2013-07, Vol.118 (14), p.7948-7961</ispartof><rights>2013. American Geophysical Union. All Rights Reserved.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Blackwell Publishing Ltd. Jul 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a5552-d1acd0cfd77d51f9a2755334dfb030014898e0047a0e850bce6ca89000f609d33</citedby><cites>FETCH-LOGICAL-a5552-d1acd0cfd77d51f9a2755334dfb030014898e0047a0e850bce6ca89000f609d33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjgrd.50612$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjgrd.50612$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27723085$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Bauer, Susanne E.</creatorcontrib><creatorcontrib>Bausch, Alexandra</creatorcontrib><creatorcontrib>Nazarenko, Larissa</creatorcontrib><creatorcontrib>Tsigaridis, Kostas</creatorcontrib><creatorcontrib>Xu, Baiqing</creatorcontrib><creatorcontrib>Edwards, Ross</creatorcontrib><creatorcontrib>Bisiaux, Marion</creatorcontrib><creatorcontrib>McConnell, Joe</creatorcontrib><title>Historical and future black carbon deposition on the three ice caps: Ice core measurements and model simulations from 1850 to 2100</title><title>Journal of geophysical research. Atmospheres</title><addtitle>J. Geophys. Res. Atmos</addtitle><description>Ice core measurements in conjunction with climate model simulations are of tremendous value when examining anthropogenic and natural aerosol loads and their role in past and future climates. Refractory black carbon (BC) records from the Arctic, the Antarctic, and the Himalayas are analyzed using three transient climate simulations performed with the Goddard Institute for Space Studies ModelE. Simulations differ in aerosol schemes (bulk aerosols vs. aerosol microphysics) and ocean couplings (fully coupled vs. prescribed ocean). Regional analyses for past (1850–2005) and future (2005–2100) carbonaceous aerosol simulations focus on the Antarctic, Greenland, and the Himalayas. Measurements from locations in the Antarctic show clean conditions with no detectable trend over the past 150 years. Historical atmospheric deposition of BC and sulfur in Greenland shows strong trends and is primarily influenced by emissions from early twentieth century agricultural and domestic practices. Models fail to reproduce observations of a sharp eightfold BC increase in Greenland at the beginning of the twentieth century that could be due to the only threefold increase in the North American emission inventory. BC deposition in Greenland is about 10 times greater than in Antarctica and 10 times less than in Tibet. The Himalayas show the most complicated transport patterns, due to the complex terrain and dynamical regimes of this region. Projections of future climate based on the four CMIP5 Representative Concentration Pathways indicate further dramatic advances of pollution to the Tibetan Plateau along with decreasing BC deposition fluxes in Greenland and the Antarctic. Key Points BC residence times of about 4 days seems realistic Models fail to reproduce the sharp 8‐fold observed BC increase Further dramatic increase of pollution reaching the Tibetan plateau predicted</description><subject>20th century</subject><subject>aerosol</subject><subject>Aerosols</subject><subject>Agricultural practices</subject><subject>Antarctica</subject><subject>Anthropogenic factors</subject><subject>Atmospheric models</subject><subject>Atmospheric pollution deposition</subject><subject>Black carbon</subject><subject>Carbon</subject><subject>Climate</subject><subject>Climate models</subject><subject>Computer simulation</subject><subject>Connectors</subject><subject>Couplings</subject><subject>Deposition</subject><subject>Earth, ocean, space</subject><subject>Emission inventories</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Fluxes</subject><subject>Future climates</subject><subject>Geophysics</subject><subject>Himalayas</subject><subject>Human influences</subject><subject>Ice caps</subject><subject>Ice cores</subject><subject>Marine</subject><subject>Meteorology</subject><subject>Microphysics</subject><subject>Oceans</subject><subject>Regional analysis</subject><subject>Simulation</subject><subject>Sulfur</subject><subject>Sulphur</subject><issn>2169-897X</issn><issn>2169-8996</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kUFrFDEYhgexYGl78RcERBBh6pdkMsl4k65uW0qFoli8hGzyjWY7M9kmM2iv_eVmunUPPTRMmO_wvE8S3qJ4TeGYArAP61_RHQuoKXtR7DNaN6VqmvrlbpbXr4qjlNaQlwJeiWq_uD_1aQzRW9MRMzjSTuMUkaw6Y2-INXEVBuJwE5IffR7zN_7GvCMi8RYzskkfydk8hZzr0aSc73EY04OvDw47knw_dWY2JNLG0BOqBJAxEJYvfljstaZLePT4Pyi-f_n87eS0vPi6PDv5dFEaIQQrHTXWgW2dlE7QtjFMCsF55doVcABaqUYhQCUNYLavLNbWqCa_ta2hcZwfFO-23k0MtxOmUfc-Wew6M2CYkqairlUlQUJG3zxB12GKQ76dZpRLAVxx8RxF60xUVMDser-lbAwpRWz1JvrexDtNQc-96bk3_dBbht8-Kk3KlbTRDNanXYJJyTio-Wi65f74Du-eMerz5dXiv7vcZnLj-HeXMfFG1zI_Sv-4XOqrxUJdw8-FZvwfsHmz_Q</recordid><startdate>20130727</startdate><enddate>20130727</enddate><creator>Bauer, Susanne E.</creator><creator>Bausch, Alexandra</creator><creator>Nazarenko, Larissa</creator><creator>Tsigaridis, Kostas</creator><creator>Xu, Baiqing</creator><creator>Edwards, Ross</creator><creator>Bisiaux, Marion</creator><creator>McConnell, Joe</creator><general>Blackwell Publishing Ltd</general><general>John Wiley &amp; Sons</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope></search><sort><creationdate>20130727</creationdate><title>Historical and future black carbon deposition on the three ice caps: Ice core measurements and model simulations from 1850 to 2100</title><author>Bauer, Susanne E. ; Bausch, Alexandra ; Nazarenko, Larissa ; Tsigaridis, Kostas ; Xu, Baiqing ; Edwards, Ross ; Bisiaux, Marion ; McConnell, Joe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a5552-d1acd0cfd77d51f9a2755334dfb030014898e0047a0e850bce6ca89000f609d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>20th century</topic><topic>aerosol</topic><topic>Aerosols</topic><topic>Agricultural practices</topic><topic>Antarctica</topic><topic>Anthropogenic factors</topic><topic>Atmospheric models</topic><topic>Atmospheric pollution deposition</topic><topic>Black carbon</topic><topic>Carbon</topic><topic>Climate</topic><topic>Climate models</topic><topic>Computer simulation</topic><topic>Connectors</topic><topic>Couplings</topic><topic>Deposition</topic><topic>Earth, ocean, space</topic><topic>Emission inventories</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Fluxes</topic><topic>Future climates</topic><topic>Geophysics</topic><topic>Himalayas</topic><topic>Human influences</topic><topic>Ice caps</topic><topic>Ice cores</topic><topic>Marine</topic><topic>Meteorology</topic><topic>Microphysics</topic><topic>Oceans</topic><topic>Regional analysis</topic><topic>Simulation</topic><topic>Sulfur</topic><topic>Sulphur</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bauer, Susanne E.</creatorcontrib><creatorcontrib>Bausch, Alexandra</creatorcontrib><creatorcontrib>Nazarenko, Larissa</creatorcontrib><creatorcontrib>Tsigaridis, Kostas</creatorcontrib><creatorcontrib>Xu, Baiqing</creatorcontrib><creatorcontrib>Edwards, Ross</creatorcontrib><creatorcontrib>Bisiaux, Marion</creatorcontrib><creatorcontrib>McConnell, Joe</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of geophysical research. Atmospheres</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bauer, Susanne E.</au><au>Bausch, Alexandra</au><au>Nazarenko, Larissa</au><au>Tsigaridis, Kostas</au><au>Xu, Baiqing</au><au>Edwards, Ross</au><au>Bisiaux, Marion</au><au>McConnell, Joe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Historical and future black carbon deposition on the three ice caps: Ice core measurements and model simulations from 1850 to 2100</atitle><jtitle>Journal of geophysical research. Atmospheres</jtitle><addtitle>J. Geophys. Res. Atmos</addtitle><date>2013-07-27</date><risdate>2013</risdate><volume>118</volume><issue>14</issue><spage>7948</spage><epage>7961</epage><pages>7948-7961</pages><issn>2169-897X</issn><eissn>2169-8996</eissn><abstract>Ice core measurements in conjunction with climate model simulations are of tremendous value when examining anthropogenic and natural aerosol loads and their role in past and future climates. Refractory black carbon (BC) records from the Arctic, the Antarctic, and the Himalayas are analyzed using three transient climate simulations performed with the Goddard Institute for Space Studies ModelE. Simulations differ in aerosol schemes (bulk aerosols vs. aerosol microphysics) and ocean couplings (fully coupled vs. prescribed ocean). Regional analyses for past (1850–2005) and future (2005–2100) carbonaceous aerosol simulations focus on the Antarctic, Greenland, and the Himalayas. Measurements from locations in the Antarctic show clean conditions with no detectable trend over the past 150 years. Historical atmospheric deposition of BC and sulfur in Greenland shows strong trends and is primarily influenced by emissions from early twentieth century agricultural and domestic practices. Models fail to reproduce observations of a sharp eightfold BC increase in Greenland at the beginning of the twentieth century that could be due to the only threefold increase in the North American emission inventory. BC deposition in Greenland is about 10 times greater than in Antarctica and 10 times less than in Tibet. The Himalayas show the most complicated transport patterns, due to the complex terrain and dynamical regimes of this region. Projections of future climate based on the four CMIP5 Representative Concentration Pathways indicate further dramatic advances of pollution to the Tibetan Plateau along with decreasing BC deposition fluxes in Greenland and the Antarctic. Key Points BC residence times of about 4 days seems realistic Models fail to reproduce the sharp 8‐fold observed BC increase Further dramatic increase of pollution reaching the Tibetan plateau predicted</abstract><cop>Hoboken, NJ</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/jgrd.50612</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-897X
ispartof Journal of geophysical research. Atmospheres, 2013-07, Vol.118 (14), p.7948-7961
issn 2169-897X
2169-8996
language eng
recordid cdi_proquest_miscellaneous_1566847070
source Access via Wiley Online Library; Wiley Online Library (Open Access Collection); Alma/SFX Local Collection
subjects 20th century
aerosol
Aerosols
Agricultural practices
Antarctica
Anthropogenic factors
Atmospheric models
Atmospheric pollution deposition
Black carbon
Carbon
Climate
Climate models
Computer simulation
Connectors
Couplings
Deposition
Earth, ocean, space
Emission inventories
Exact sciences and technology
External geophysics
Fluxes
Future climates
Geophysics
Himalayas
Human influences
Ice caps
Ice cores
Marine
Meteorology
Microphysics
Oceans
Regional analysis
Simulation
Sulfur
Sulphur
title Historical and future black carbon deposition on the three ice caps: Ice core measurements and model simulations from 1850 to 2100
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T19%3A38%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Historical%20and%20future%20black%20carbon%20deposition%20on%20the%20three%20ice%20caps:%20Ice%20core%20measurements%20and%20model%20simulations%20from%201850%20to%202100&rft.jtitle=Journal%20of%20geophysical%20research.%20Atmospheres&rft.au=Bauer,%20Susanne%20E.&rft.date=2013-07-27&rft.volume=118&rft.issue=14&rft.spage=7948&rft.epage=7961&rft.pages=7948-7961&rft.issn=2169-897X&rft.eissn=2169-8996&rft_id=info:doi/10.1002/jgrd.50612&rft_dat=%3Cproquest_cross%3E1566847070%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1638341500&rft_id=info:pmid/&rfr_iscdi=true