Terrestrial biodiversity along the Ross Sea coastline, Antarctica: lack of a latitudinal gradient and potential limits of bioclimatic modeling

Antarctica has several apparent advantages for the study of biodiversity change along latitudinal gradients including a relatively pristine environment and simple community structures. Published analyses for lichens and mosses show no apparent gradient in biodiversity along the western Ross Sea coas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polar biology 2014-08, Vol.37 (8), p.1197-1208
Hauptverfasser: Colesie, C., Green, T. G. A., Türk, R., Hogg, I. D., Sancho, L. G., Büdel, B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1208
container_issue 8
container_start_page 1197
container_title Polar biology
container_volume 37
creator Colesie, C.
Green, T. G. A.
Türk, R.
Hogg, I. D.
Sancho, L. G.
Büdel, B.
description Antarctica has several apparent advantages for the study of biodiversity change along latitudinal gradients including a relatively pristine environment and simple community structures. Published analyses for lichens and mosses show no apparent gradient in biodiversity along the western Ross Sea coast line, the longest ice-free area in Antarctica spanning 14° latitude. One suggestion is that the area remains poorly surveyed. Here, we combine available species lists from four sites along the coast with new own data from two additional sites [Taylor Valley (77°30′S) and Diamond Hill (79°S)]. We show a decline in total terrestrial biodiversity with latitude from Cape Hallett (72°S) to Diamond Hill. However, the southernmost site, the Queen Maud Mountains (84°S), is exceptional with almost the same diversity as Cape Hallett. A categorization of lichens according to their proposed ecology shows the proportion of tolerant species remains relatively constant. However, the absolute number of conformant species declines with latitude, again with a minimum at Diamond Hill. Similarity indices are low and not very different between sites with Diamond Hill being the exception with very few species. We suggest that terrestrial biodiversity best reflects microhabitat water availability rather than macroclimatic temperature changes and use climate data from Taylor Valley and Diamond Hill to support this suggestion. We propose that the importance of microhabitats and landscape location is one of several possible limitations to the application of bioclimatic modeling along the Ross sea coastline. In the absence of a definitive link between macroclimate and the biota, predicting the effects of climate changes will be more challenging.
doi_str_mv 10.1007/s00300-014-1513-y
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1566845526</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A715543173</galeid><sourcerecordid>A715543173</sourcerecordid><originalsourceid>FETCH-LOGICAL-c558t-bf2e23efa8a8526b842708631a8708c9d36da343437c4d9ead664717bb8e3d9e3</originalsourceid><addsrcrecordid>eNp1UduKFDEQbUTBcfUDfAuI4IO9Jp3r-DYs6wUWBF2fQ3WSHrP2JGOSEeYn_Gar6UVEkHqoquScU7eue87oJaNUv6mUckp7ykTPJOP9-UG3YYIP_UClethtqB6GXlBFH3dPar2jlGkltpvu120oJdRWIsxkjNnHn6HU2M4E5pz2pH0L5HOulXwJQFyG2uaYwmuySw2Ka9HBWzKD-07yRACjFtvJx4Ri-wI-htQIJE-OuWG41JjjIba6wLGawwwpjhyyDyi8f9o9mmCu4dm9v-i-vru-vfrQ33x6__Fqd9M7KU3rx2kIAw8TGDByUKMRg6ZGcQYGvdt6rjxwgaad8NsAXimhmR5HEzjm_KJ7teoeS_5xwvntIVYX5hlSyKdqmVTKCInaCH3xD_QunwpOuKCk2nKltETU5YrawxxsTFNuBRyaD4focgpTxPedRorgTHMksJXgCq63hMkeCy6jnC2jdjmpXU9q8aR2Oak9I-flfStQHcxTgeRi_UMcjDTc8EV7WHEVv9I-lL9a_q_4bxhMsm8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1556936675</pqid></control><display><type>article</type><title>Terrestrial biodiversity along the Ross Sea coastline, Antarctica: lack of a latitudinal gradient and potential limits of bioclimatic modeling</title><source>Springer Online Journals</source><creator>Colesie, C. ; Green, T. G. A. ; Türk, R. ; Hogg, I. D. ; Sancho, L. G. ; Büdel, B.</creator><creatorcontrib>Colesie, C. ; Green, T. G. A. ; Türk, R. ; Hogg, I. D. ; Sancho, L. G. ; Büdel, B.</creatorcontrib><description>Antarctica has several apparent advantages for the study of biodiversity change along latitudinal gradients including a relatively pristine environment and simple community structures. Published analyses for lichens and mosses show no apparent gradient in biodiversity along the western Ross Sea coast line, the longest ice-free area in Antarctica spanning 14° latitude. One suggestion is that the area remains poorly surveyed. Here, we combine available species lists from four sites along the coast with new own data from two additional sites [Taylor Valley (77°30′S) and Diamond Hill (79°S)]. We show a decline in total terrestrial biodiversity with latitude from Cape Hallett (72°S) to Diamond Hill. However, the southernmost site, the Queen Maud Mountains (84°S), is exceptional with almost the same diversity as Cape Hallett. A categorization of lichens according to their proposed ecology shows the proportion of tolerant species remains relatively constant. However, the absolute number of conformant species declines with latitude, again with a minimum at Diamond Hill. Similarity indices are low and not very different between sites with Diamond Hill being the exception with very few species. We suggest that terrestrial biodiversity best reflects microhabitat water availability rather than macroclimatic temperature changes and use climate data from Taylor Valley and Diamond Hill to support this suggestion. We propose that the importance of microhabitats and landscape location is one of several possible limitations to the application of bioclimatic modeling along the Ross sea coastline. In the absence of a definitive link between macroclimate and the biota, predicting the effects of climate changes will be more challenging.</description><identifier>ISSN: 0722-4060</identifier><identifier>EISSN: 1432-2056</identifier><identifier>DOI: 10.1007/s00300-014-1513-y</identifier><identifier>CODEN: POBIDP</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analysis ; Animal and plant ecology ; Animal, plant and microbial ecology ; Bioclimatology ; Biodiversity ; Biological and medical sciences ; Biological diversity ; Biomedical and Life Sciences ; Biota ; Climate change ; Climate effects ; Climate science ; Climatic data ; Climatology. Bioclimatology. Climate change ; Coastal zone management ; Earth, ocean, space ; Ecology ; Exact sciences and technology ; External geophysics ; Fundamental and applied biological sciences. Psychology ; General aspects ; General aspects. Techniques ; Lichens ; Life Sciences ; Meteorology ; Methods and techniques (sampling, tagging, trapping, modelling...) ; Microbiology ; Microhabitats ; Mountains ; Oceanography ; Original Paper ; Particular ecosystems ; Plant Sciences ; Synecology ; Terrestrial ecosystems ; Valleys ; Water availability ; Zoology</subject><ispartof>Polar biology, 2014-08, Vol.37 (8), p.1197-1208</ispartof><rights>Springer-Verlag Berlin Heidelberg 2014</rights><rights>2015 INIST-CNRS</rights><rights>COPYRIGHT 2014 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c558t-bf2e23efa8a8526b842708631a8708c9d36da343437c4d9ead664717bb8e3d9e3</citedby><cites>FETCH-LOGICAL-c558t-bf2e23efa8a8526b842708631a8708c9d36da343437c4d9ead664717bb8e3d9e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00300-014-1513-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00300-014-1513-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28583833$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Colesie, C.</creatorcontrib><creatorcontrib>Green, T. G. A.</creatorcontrib><creatorcontrib>Türk, R.</creatorcontrib><creatorcontrib>Hogg, I. D.</creatorcontrib><creatorcontrib>Sancho, L. G.</creatorcontrib><creatorcontrib>Büdel, B.</creatorcontrib><title>Terrestrial biodiversity along the Ross Sea coastline, Antarctica: lack of a latitudinal gradient and potential limits of bioclimatic modeling</title><title>Polar biology</title><addtitle>Polar Biol</addtitle><description>Antarctica has several apparent advantages for the study of biodiversity change along latitudinal gradients including a relatively pristine environment and simple community structures. Published analyses for lichens and mosses show no apparent gradient in biodiversity along the western Ross Sea coast line, the longest ice-free area in Antarctica spanning 14° latitude. One suggestion is that the area remains poorly surveyed. Here, we combine available species lists from four sites along the coast with new own data from two additional sites [Taylor Valley (77°30′S) and Diamond Hill (79°S)]. We show a decline in total terrestrial biodiversity with latitude from Cape Hallett (72°S) to Diamond Hill. However, the southernmost site, the Queen Maud Mountains (84°S), is exceptional with almost the same diversity as Cape Hallett. A categorization of lichens according to their proposed ecology shows the proportion of tolerant species remains relatively constant. However, the absolute number of conformant species declines with latitude, again with a minimum at Diamond Hill. Similarity indices are low and not very different between sites with Diamond Hill being the exception with very few species. We suggest that terrestrial biodiversity best reflects microhabitat water availability rather than macroclimatic temperature changes and use climate data from Taylor Valley and Diamond Hill to support this suggestion. We propose that the importance of microhabitats and landscape location is one of several possible limitations to the application of bioclimatic modeling along the Ross sea coastline. In the absence of a definitive link between macroclimate and the biota, predicting the effects of climate changes will be more challenging.</description><subject>Analysis</subject><subject>Animal and plant ecology</subject><subject>Animal, plant and microbial ecology</subject><subject>Bioclimatology</subject><subject>Biodiversity</subject><subject>Biological and medical sciences</subject><subject>Biological diversity</subject><subject>Biomedical and Life Sciences</subject><subject>Biota</subject><subject>Climate change</subject><subject>Climate effects</subject><subject>Climate science</subject><subject>Climatic data</subject><subject>Climatology. Bioclimatology. Climate change</subject><subject>Coastal zone management</subject><subject>Earth, ocean, space</subject><subject>Ecology</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects</subject><subject>General aspects. Techniques</subject><subject>Lichens</subject><subject>Life Sciences</subject><subject>Meteorology</subject><subject>Methods and techniques (sampling, tagging, trapping, modelling...)</subject><subject>Microbiology</subject><subject>Microhabitats</subject><subject>Mountains</subject><subject>Oceanography</subject><subject>Original Paper</subject><subject>Particular ecosystems</subject><subject>Plant Sciences</subject><subject>Synecology</subject><subject>Terrestrial ecosystems</subject><subject>Valleys</subject><subject>Water availability</subject><subject>Zoology</subject><issn>0722-4060</issn><issn>1432-2056</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1UduKFDEQbUTBcfUDfAuI4IO9Jp3r-DYs6wUWBF2fQ3WSHrP2JGOSEeYn_Gar6UVEkHqoquScU7eue87oJaNUv6mUckp7ykTPJOP9-UG3YYIP_UClethtqB6GXlBFH3dPar2jlGkltpvu120oJdRWIsxkjNnHn6HU2M4E5pz2pH0L5HOulXwJQFyG2uaYwmuySw2Ka9HBWzKD-07yRACjFtvJx4Ri-wI-htQIJE-OuWG41JjjIba6wLGawwwpjhyyDyi8f9o9mmCu4dm9v-i-vru-vfrQ33x6__Fqd9M7KU3rx2kIAw8TGDByUKMRg6ZGcQYGvdt6rjxwgaad8NsAXimhmR5HEzjm_KJ7teoeS_5xwvntIVYX5hlSyKdqmVTKCInaCH3xD_QunwpOuKCk2nKltETU5YrawxxsTFNuBRyaD4focgpTxPedRorgTHMksJXgCq63hMkeCy6jnC2jdjmpXU9q8aR2Oak9I-flfStQHcxTgeRi_UMcjDTc8EV7WHEVv9I-lL9a_q_4bxhMsm8</recordid><startdate>20140801</startdate><enddate>20140801</enddate><creator>Colesie, C.</creator><creator>Green, T. G. A.</creator><creator>Türk, R.</creator><creator>Hogg, I. D.</creator><creator>Sancho, L. G.</creator><creator>Büdel, B.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7SN</scope><scope>7SS</scope><scope>7T7</scope><scope>7TN</scope><scope>7U9</scope><scope>88A</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H94</scope><scope>H95</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>LK8</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7ST</scope><scope>7TG</scope><scope>7U6</scope><scope>KL.</scope></search><sort><creationdate>20140801</creationdate><title>Terrestrial biodiversity along the Ross Sea coastline, Antarctica: lack of a latitudinal gradient and potential limits of bioclimatic modeling</title><author>Colesie, C. ; Green, T. G. A. ; Türk, R. ; Hogg, I. D. ; Sancho, L. G. ; Büdel, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c558t-bf2e23efa8a8526b842708631a8708c9d36da343437c4d9ead664717bb8e3d9e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Analysis</topic><topic>Animal and plant ecology</topic><topic>Animal, plant and microbial ecology</topic><topic>Bioclimatology</topic><topic>Biodiversity</topic><topic>Biological and medical sciences</topic><topic>Biological diversity</topic><topic>Biomedical and Life Sciences</topic><topic>Biota</topic><topic>Climate change</topic><topic>Climate effects</topic><topic>Climate science</topic><topic>Climatic data</topic><topic>Climatology. Bioclimatology. Climate change</topic><topic>Coastal zone management</topic><topic>Earth, ocean, space</topic><topic>Ecology</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects</topic><topic>General aspects. Techniques</topic><topic>Lichens</topic><topic>Life Sciences</topic><topic>Meteorology</topic><topic>Methods and techniques (sampling, tagging, trapping, modelling...)</topic><topic>Microbiology</topic><topic>Microhabitats</topic><topic>Mountains</topic><topic>Oceanography</topic><topic>Original Paper</topic><topic>Particular ecosystems</topic><topic>Plant Sciences</topic><topic>Synecology</topic><topic>Terrestrial ecosystems</topic><topic>Valleys</topic><topic>Water availability</topic><topic>Zoology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Colesie, C.</creatorcontrib><creatorcontrib>Green, T. G. A.</creatorcontrib><creatorcontrib>Türk, R.</creatorcontrib><creatorcontrib>Hogg, I. D.</creatorcontrib><creatorcontrib>Sancho, L. G.</creatorcontrib><creatorcontrib>Büdel, B.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Oceanic Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Biology Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Biological Sciences</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>Polar biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Colesie, C.</au><au>Green, T. G. A.</au><au>Türk, R.</au><au>Hogg, I. D.</au><au>Sancho, L. G.</au><au>Büdel, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Terrestrial biodiversity along the Ross Sea coastline, Antarctica: lack of a latitudinal gradient and potential limits of bioclimatic modeling</atitle><jtitle>Polar biology</jtitle><stitle>Polar Biol</stitle><date>2014-08-01</date><risdate>2014</risdate><volume>37</volume><issue>8</issue><spage>1197</spage><epage>1208</epage><pages>1197-1208</pages><issn>0722-4060</issn><eissn>1432-2056</eissn><coden>POBIDP</coden><abstract>Antarctica has several apparent advantages for the study of biodiversity change along latitudinal gradients including a relatively pristine environment and simple community structures. Published analyses for lichens and mosses show no apparent gradient in biodiversity along the western Ross Sea coast line, the longest ice-free area in Antarctica spanning 14° latitude. One suggestion is that the area remains poorly surveyed. Here, we combine available species lists from four sites along the coast with new own data from two additional sites [Taylor Valley (77°30′S) and Diamond Hill (79°S)]. We show a decline in total terrestrial biodiversity with latitude from Cape Hallett (72°S) to Diamond Hill. However, the southernmost site, the Queen Maud Mountains (84°S), is exceptional with almost the same diversity as Cape Hallett. A categorization of lichens according to their proposed ecology shows the proportion of tolerant species remains relatively constant. However, the absolute number of conformant species declines with latitude, again with a minimum at Diamond Hill. Similarity indices are low and not very different between sites with Diamond Hill being the exception with very few species. We suggest that terrestrial biodiversity best reflects microhabitat water availability rather than macroclimatic temperature changes and use climate data from Taylor Valley and Diamond Hill to support this suggestion. We propose that the importance of microhabitats and landscape location is one of several possible limitations to the application of bioclimatic modeling along the Ross sea coastline. In the absence of a definitive link between macroclimate and the biota, predicting the effects of climate changes will be more challenging.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00300-014-1513-y</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0722-4060
ispartof Polar biology, 2014-08, Vol.37 (8), p.1197-1208
issn 0722-4060
1432-2056
language eng
recordid cdi_proquest_miscellaneous_1566845526
source Springer Online Journals
subjects Analysis
Animal and plant ecology
Animal, plant and microbial ecology
Bioclimatology
Biodiversity
Biological and medical sciences
Biological diversity
Biomedical and Life Sciences
Biota
Climate change
Climate effects
Climate science
Climatic data
Climatology. Bioclimatology. Climate change
Coastal zone management
Earth, ocean, space
Ecology
Exact sciences and technology
External geophysics
Fundamental and applied biological sciences. Psychology
General aspects
General aspects. Techniques
Lichens
Life Sciences
Meteorology
Methods and techniques (sampling, tagging, trapping, modelling...)
Microbiology
Microhabitats
Mountains
Oceanography
Original Paper
Particular ecosystems
Plant Sciences
Synecology
Terrestrial ecosystems
Valleys
Water availability
Zoology
title Terrestrial biodiversity along the Ross Sea coastline, Antarctica: lack of a latitudinal gradient and potential limits of bioclimatic modeling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T18%3A49%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Terrestrial%20biodiversity%20along%20the%20Ross%20Sea%20coastline,%20Antarctica:%20lack%20of%20a%20latitudinal%20gradient%20and%20potential%20limits%20of%20bioclimatic%20modeling&rft.jtitle=Polar%20biology&rft.au=Colesie,%20C.&rft.date=2014-08-01&rft.volume=37&rft.issue=8&rft.spage=1197&rft.epage=1208&rft.pages=1197-1208&rft.issn=0722-4060&rft.eissn=1432-2056&rft.coden=POBIDP&rft_id=info:doi/10.1007/s00300-014-1513-y&rft_dat=%3Cgale_proqu%3EA715543173%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1556936675&rft_id=info:pmid/&rft_galeid=A715543173&rfr_iscdi=true