Terrestrial biodiversity along the Ross Sea coastline, Antarctica: lack of a latitudinal gradient and potential limits of bioclimatic modeling
Antarctica has several apparent advantages for the study of biodiversity change along latitudinal gradients including a relatively pristine environment and simple community structures. Published analyses for lichens and mosses show no apparent gradient in biodiversity along the western Ross Sea coas...
Gespeichert in:
Veröffentlicht in: | Polar biology 2014-08, Vol.37 (8), p.1197-1208 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1208 |
---|---|
container_issue | 8 |
container_start_page | 1197 |
container_title | Polar biology |
container_volume | 37 |
creator | Colesie, C. Green, T. G. A. Türk, R. Hogg, I. D. Sancho, L. G. Büdel, B. |
description | Antarctica has several apparent advantages for the study of biodiversity change along latitudinal gradients including a relatively pristine environment and simple community structures. Published analyses for lichens and mosses show no apparent gradient in biodiversity along the western Ross Sea coast line, the longest ice-free area in Antarctica spanning 14° latitude. One suggestion is that the area remains poorly surveyed. Here, we combine available species lists from four sites along the coast with new own data from two additional sites [Taylor Valley (77°30′S) and Diamond Hill (79°S)]. We show a decline in total terrestrial biodiversity with latitude from Cape Hallett (72°S) to Diamond Hill. However, the southernmost site, the Queen Maud Mountains (84°S), is exceptional with almost the same diversity as Cape Hallett. A categorization of lichens according to their proposed ecology shows the proportion of tolerant species remains relatively constant. However, the absolute number of conformant species declines with latitude, again with a minimum at Diamond Hill. Similarity indices are low and not very different between sites with Diamond Hill being the exception with very few species. We suggest that terrestrial biodiversity best reflects microhabitat water availability rather than macroclimatic temperature changes and use climate data from Taylor Valley and Diamond Hill to support this suggestion. We propose that the importance of microhabitats and landscape location is one of several possible limitations to the application of bioclimatic modeling along the Ross sea coastline. In the absence of a definitive link between macroclimate and the biota, predicting the effects of climate changes will be more challenging. |
doi_str_mv | 10.1007/s00300-014-1513-y |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1566845526</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A715543173</galeid><sourcerecordid>A715543173</sourcerecordid><originalsourceid>FETCH-LOGICAL-c558t-bf2e23efa8a8526b842708631a8708c9d36da343437c4d9ead664717bb8e3d9e3</originalsourceid><addsrcrecordid>eNp1UduKFDEQbUTBcfUDfAuI4IO9Jp3r-DYs6wUWBF2fQ3WSHrP2JGOSEeYn_Gar6UVEkHqoquScU7eue87oJaNUv6mUckp7ykTPJOP9-UG3YYIP_UClethtqB6GXlBFH3dPar2jlGkltpvu120oJdRWIsxkjNnHn6HU2M4E5pz2pH0L5HOulXwJQFyG2uaYwmuySw2Ka9HBWzKD-07yRACjFtvJx4Ri-wI-htQIJE-OuWG41JjjIba6wLGawwwpjhyyDyi8f9o9mmCu4dm9v-i-vru-vfrQ33x6__Fqd9M7KU3rx2kIAw8TGDByUKMRg6ZGcQYGvdt6rjxwgaad8NsAXimhmR5HEzjm_KJ7teoeS_5xwvntIVYX5hlSyKdqmVTKCInaCH3xD_QunwpOuKCk2nKltETU5YrawxxsTFNuBRyaD4focgpTxPedRorgTHMksJXgCq63hMkeCy6jnC2jdjmpXU9q8aR2Oak9I-flfStQHcxTgeRi_UMcjDTc8EV7WHEVv9I-lL9a_q_4bxhMsm8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1556936675</pqid></control><display><type>article</type><title>Terrestrial biodiversity along the Ross Sea coastline, Antarctica: lack of a latitudinal gradient and potential limits of bioclimatic modeling</title><source>Springer Online Journals</source><creator>Colesie, C. ; Green, T. G. A. ; Türk, R. ; Hogg, I. D. ; Sancho, L. G. ; Büdel, B.</creator><creatorcontrib>Colesie, C. ; Green, T. G. A. ; Türk, R. ; Hogg, I. D. ; Sancho, L. G. ; Büdel, B.</creatorcontrib><description>Antarctica has several apparent advantages for the study of biodiversity change along latitudinal gradients including a relatively pristine environment and simple community structures. Published analyses for lichens and mosses show no apparent gradient in biodiversity along the western Ross Sea coast line, the longest ice-free area in Antarctica spanning 14° latitude. One suggestion is that the area remains poorly surveyed. Here, we combine available species lists from four sites along the coast with new own data from two additional sites [Taylor Valley (77°30′S) and Diamond Hill (79°S)]. We show a decline in total terrestrial biodiversity with latitude from Cape Hallett (72°S) to Diamond Hill. However, the southernmost site, the Queen Maud Mountains (84°S), is exceptional with almost the same diversity as Cape Hallett. A categorization of lichens according to their proposed ecology shows the proportion of tolerant species remains relatively constant. However, the absolute number of conformant species declines with latitude, again with a minimum at Diamond Hill. Similarity indices are low and not very different between sites with Diamond Hill being the exception with very few species. We suggest that terrestrial biodiversity best reflects microhabitat water availability rather than macroclimatic temperature changes and use climate data from Taylor Valley and Diamond Hill to support this suggestion. We propose that the importance of microhabitats and landscape location is one of several possible limitations to the application of bioclimatic modeling along the Ross sea coastline. In the absence of a definitive link between macroclimate and the biota, predicting the effects of climate changes will be more challenging.</description><identifier>ISSN: 0722-4060</identifier><identifier>EISSN: 1432-2056</identifier><identifier>DOI: 10.1007/s00300-014-1513-y</identifier><identifier>CODEN: POBIDP</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analysis ; Animal and plant ecology ; Animal, plant and microbial ecology ; Bioclimatology ; Biodiversity ; Biological and medical sciences ; Biological diversity ; Biomedical and Life Sciences ; Biota ; Climate change ; Climate effects ; Climate science ; Climatic data ; Climatology. Bioclimatology. Climate change ; Coastal zone management ; Earth, ocean, space ; Ecology ; Exact sciences and technology ; External geophysics ; Fundamental and applied biological sciences. Psychology ; General aspects ; General aspects. Techniques ; Lichens ; Life Sciences ; Meteorology ; Methods and techniques (sampling, tagging, trapping, modelling...) ; Microbiology ; Microhabitats ; Mountains ; Oceanography ; Original Paper ; Particular ecosystems ; Plant Sciences ; Synecology ; Terrestrial ecosystems ; Valleys ; Water availability ; Zoology</subject><ispartof>Polar biology, 2014-08, Vol.37 (8), p.1197-1208</ispartof><rights>Springer-Verlag Berlin Heidelberg 2014</rights><rights>2015 INIST-CNRS</rights><rights>COPYRIGHT 2014 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c558t-bf2e23efa8a8526b842708631a8708c9d36da343437c4d9ead664717bb8e3d9e3</citedby><cites>FETCH-LOGICAL-c558t-bf2e23efa8a8526b842708631a8708c9d36da343437c4d9ead664717bb8e3d9e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00300-014-1513-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00300-014-1513-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28583833$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Colesie, C.</creatorcontrib><creatorcontrib>Green, T. G. A.</creatorcontrib><creatorcontrib>Türk, R.</creatorcontrib><creatorcontrib>Hogg, I. D.</creatorcontrib><creatorcontrib>Sancho, L. G.</creatorcontrib><creatorcontrib>Büdel, B.</creatorcontrib><title>Terrestrial biodiversity along the Ross Sea coastline, Antarctica: lack of a latitudinal gradient and potential limits of bioclimatic modeling</title><title>Polar biology</title><addtitle>Polar Biol</addtitle><description>Antarctica has several apparent advantages for the study of biodiversity change along latitudinal gradients including a relatively pristine environment and simple community structures. Published analyses for lichens and mosses show no apparent gradient in biodiversity along the western Ross Sea coast line, the longest ice-free area in Antarctica spanning 14° latitude. One suggestion is that the area remains poorly surveyed. Here, we combine available species lists from four sites along the coast with new own data from two additional sites [Taylor Valley (77°30′S) and Diamond Hill (79°S)]. We show a decline in total terrestrial biodiversity with latitude from Cape Hallett (72°S) to Diamond Hill. However, the southernmost site, the Queen Maud Mountains (84°S), is exceptional with almost the same diversity as Cape Hallett. A categorization of lichens according to their proposed ecology shows the proportion of tolerant species remains relatively constant. However, the absolute number of conformant species declines with latitude, again with a minimum at Diamond Hill. Similarity indices are low and not very different between sites with Diamond Hill being the exception with very few species. We suggest that terrestrial biodiversity best reflects microhabitat water availability rather than macroclimatic temperature changes and use climate data from Taylor Valley and Diamond Hill to support this suggestion. We propose that the importance of microhabitats and landscape location is one of several possible limitations to the application of bioclimatic modeling along the Ross sea coastline. In the absence of a definitive link between macroclimate and the biota, predicting the effects of climate changes will be more challenging.</description><subject>Analysis</subject><subject>Animal and plant ecology</subject><subject>Animal, plant and microbial ecology</subject><subject>Bioclimatology</subject><subject>Biodiversity</subject><subject>Biological and medical sciences</subject><subject>Biological diversity</subject><subject>Biomedical and Life Sciences</subject><subject>Biota</subject><subject>Climate change</subject><subject>Climate effects</subject><subject>Climate science</subject><subject>Climatic data</subject><subject>Climatology. Bioclimatology. Climate change</subject><subject>Coastal zone management</subject><subject>Earth, ocean, space</subject><subject>Ecology</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects</subject><subject>General aspects. Techniques</subject><subject>Lichens</subject><subject>Life Sciences</subject><subject>Meteorology</subject><subject>Methods and techniques (sampling, tagging, trapping, modelling...)</subject><subject>Microbiology</subject><subject>Microhabitats</subject><subject>Mountains</subject><subject>Oceanography</subject><subject>Original Paper</subject><subject>Particular ecosystems</subject><subject>Plant Sciences</subject><subject>Synecology</subject><subject>Terrestrial ecosystems</subject><subject>Valleys</subject><subject>Water availability</subject><subject>Zoology</subject><issn>0722-4060</issn><issn>1432-2056</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1UduKFDEQbUTBcfUDfAuI4IO9Jp3r-DYs6wUWBF2fQ3WSHrP2JGOSEeYn_Gar6UVEkHqoquScU7eue87oJaNUv6mUckp7ykTPJOP9-UG3YYIP_UClethtqB6GXlBFH3dPar2jlGkltpvu120oJdRWIsxkjNnHn6HU2M4E5pz2pH0L5HOulXwJQFyG2uaYwmuySw2Ka9HBWzKD-07yRACjFtvJx4Ri-wI-htQIJE-OuWG41JjjIba6wLGawwwpjhyyDyi8f9o9mmCu4dm9v-i-vru-vfrQ33x6__Fqd9M7KU3rx2kIAw8TGDByUKMRg6ZGcQYGvdt6rjxwgaad8NsAXimhmR5HEzjm_KJ7teoeS_5xwvntIVYX5hlSyKdqmVTKCInaCH3xD_QunwpOuKCk2nKltETU5YrawxxsTFNuBRyaD4focgpTxPedRorgTHMksJXgCq63hMkeCy6jnC2jdjmpXU9q8aR2Oak9I-flfStQHcxTgeRi_UMcjDTc8EV7WHEVv9I-lL9a_q_4bxhMsm8</recordid><startdate>20140801</startdate><enddate>20140801</enddate><creator>Colesie, C.</creator><creator>Green, T. G. A.</creator><creator>Türk, R.</creator><creator>Hogg, I. D.</creator><creator>Sancho, L. G.</creator><creator>Büdel, B.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7SN</scope><scope>7SS</scope><scope>7T7</scope><scope>7TN</scope><scope>7U9</scope><scope>88A</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H94</scope><scope>H95</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>LK8</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7ST</scope><scope>7TG</scope><scope>7U6</scope><scope>KL.</scope></search><sort><creationdate>20140801</creationdate><title>Terrestrial biodiversity along the Ross Sea coastline, Antarctica: lack of a latitudinal gradient and potential limits of bioclimatic modeling</title><author>Colesie, C. ; Green, T. G. A. ; Türk, R. ; Hogg, I. D. ; Sancho, L. G. ; Büdel, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c558t-bf2e23efa8a8526b842708631a8708c9d36da343437c4d9ead664717bb8e3d9e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Analysis</topic><topic>Animal and plant ecology</topic><topic>Animal, plant and microbial ecology</topic><topic>Bioclimatology</topic><topic>Biodiversity</topic><topic>Biological and medical sciences</topic><topic>Biological diversity</topic><topic>Biomedical and Life Sciences</topic><topic>Biota</topic><topic>Climate change</topic><topic>Climate effects</topic><topic>Climate science</topic><topic>Climatic data</topic><topic>Climatology. Bioclimatology. Climate change</topic><topic>Coastal zone management</topic><topic>Earth, ocean, space</topic><topic>Ecology</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects</topic><topic>General aspects. Techniques</topic><topic>Lichens</topic><topic>Life Sciences</topic><topic>Meteorology</topic><topic>Methods and techniques (sampling, tagging, trapping, modelling...)</topic><topic>Microbiology</topic><topic>Microhabitats</topic><topic>Mountains</topic><topic>Oceanography</topic><topic>Original Paper</topic><topic>Particular ecosystems</topic><topic>Plant Sciences</topic><topic>Synecology</topic><topic>Terrestrial ecosystems</topic><topic>Valleys</topic><topic>Water availability</topic><topic>Zoology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Colesie, C.</creatorcontrib><creatorcontrib>Green, T. G. A.</creatorcontrib><creatorcontrib>Türk, R.</creatorcontrib><creatorcontrib>Hogg, I. D.</creatorcontrib><creatorcontrib>Sancho, L. G.</creatorcontrib><creatorcontrib>Büdel, B.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Oceanic Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Biology Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Biological Sciences</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><jtitle>Polar biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Colesie, C.</au><au>Green, T. G. A.</au><au>Türk, R.</au><au>Hogg, I. D.</au><au>Sancho, L. G.</au><au>Büdel, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Terrestrial biodiversity along the Ross Sea coastline, Antarctica: lack of a latitudinal gradient and potential limits of bioclimatic modeling</atitle><jtitle>Polar biology</jtitle><stitle>Polar Biol</stitle><date>2014-08-01</date><risdate>2014</risdate><volume>37</volume><issue>8</issue><spage>1197</spage><epage>1208</epage><pages>1197-1208</pages><issn>0722-4060</issn><eissn>1432-2056</eissn><coden>POBIDP</coden><abstract>Antarctica has several apparent advantages for the study of biodiversity change along latitudinal gradients including a relatively pristine environment and simple community structures. Published analyses for lichens and mosses show no apparent gradient in biodiversity along the western Ross Sea coast line, the longest ice-free area in Antarctica spanning 14° latitude. One suggestion is that the area remains poorly surveyed. Here, we combine available species lists from four sites along the coast with new own data from two additional sites [Taylor Valley (77°30′S) and Diamond Hill (79°S)]. We show a decline in total terrestrial biodiversity with latitude from Cape Hallett (72°S) to Diamond Hill. However, the southernmost site, the Queen Maud Mountains (84°S), is exceptional with almost the same diversity as Cape Hallett. A categorization of lichens according to their proposed ecology shows the proportion of tolerant species remains relatively constant. However, the absolute number of conformant species declines with latitude, again with a minimum at Diamond Hill. Similarity indices are low and not very different between sites with Diamond Hill being the exception with very few species. We suggest that terrestrial biodiversity best reflects microhabitat water availability rather than macroclimatic temperature changes and use climate data from Taylor Valley and Diamond Hill to support this suggestion. We propose that the importance of microhabitats and landscape location is one of several possible limitations to the application of bioclimatic modeling along the Ross sea coastline. In the absence of a definitive link between macroclimate and the biota, predicting the effects of climate changes will be more challenging.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00300-014-1513-y</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0722-4060 |
ispartof | Polar biology, 2014-08, Vol.37 (8), p.1197-1208 |
issn | 0722-4060 1432-2056 |
language | eng |
recordid | cdi_proquest_miscellaneous_1566845526 |
source | Springer Online Journals |
subjects | Analysis Animal and plant ecology Animal, plant and microbial ecology Bioclimatology Biodiversity Biological and medical sciences Biological diversity Biomedical and Life Sciences Biota Climate change Climate effects Climate science Climatic data Climatology. Bioclimatology. Climate change Coastal zone management Earth, ocean, space Ecology Exact sciences and technology External geophysics Fundamental and applied biological sciences. Psychology General aspects General aspects. Techniques Lichens Life Sciences Meteorology Methods and techniques (sampling, tagging, trapping, modelling...) Microbiology Microhabitats Mountains Oceanography Original Paper Particular ecosystems Plant Sciences Synecology Terrestrial ecosystems Valleys Water availability Zoology |
title | Terrestrial biodiversity along the Ross Sea coastline, Antarctica: lack of a latitudinal gradient and potential limits of bioclimatic modeling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T18%3A49%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Terrestrial%20biodiversity%20along%20the%20Ross%20Sea%20coastline,%20Antarctica:%20lack%20of%20a%20latitudinal%20gradient%20and%20potential%20limits%20of%20bioclimatic%20modeling&rft.jtitle=Polar%20biology&rft.au=Colesie,%20C.&rft.date=2014-08-01&rft.volume=37&rft.issue=8&rft.spage=1197&rft.epage=1208&rft.pages=1197-1208&rft.issn=0722-4060&rft.eissn=1432-2056&rft.coden=POBIDP&rft_id=info:doi/10.1007/s00300-014-1513-y&rft_dat=%3Cgale_proqu%3EA715543173%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1556936675&rft_id=info:pmid/&rft_galeid=A715543173&rfr_iscdi=true |