Combining animal movements and behavioural data to detect behavioural states

Animal movement paths show variation in space caused by qualitative shifts in behaviours. I present a method that (1) uses both movement path data and ancillary sensor data to detect natural breakpoints in animal behaviour and (2) groups these segments into different behavioural states. The method c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ecology letters 2014-10, Vol.17 (10), p.1228-1237
Hauptverfasser: Nams, Vilis O, Moorcroft, Paul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1237
container_issue 10
container_start_page 1228
container_title Ecology letters
container_volume 17
creator Nams, Vilis O
Moorcroft, Paul
description Animal movement paths show variation in space caused by qualitative shifts in behaviours. I present a method that (1) uses both movement path data and ancillary sensor data to detect natural breakpoints in animal behaviour and (2) groups these segments into different behavioural states. The method can also combine analyses of different path segments or paths from different individuals. It does not assume any underlying movement mechanism. I give an example with simulated data. I also show the effects of random variation, # of states and # of segments on this method. I present a case study of a fisher movement path spanning 8 days, which shows four distinct behavioural states divided into 28 path segments when only turning angles and speed were considered. When accelerometer data were added, the analysis shows seven distinct behavioural states divided into 41 path segments.
doi_str_mv 10.1111/ele.12328
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1566845443</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3425994771</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4488-6a6c60436066eff09566fac836099c0947a7999c279a391bf80e84d397aa8cad3</originalsourceid><addsrcrecordid>eNqNkk1P3DAQhi1UVOjSQ_9AicSlPQTs2PHHEVbLFmlVhCgqN2s2mdDQfEDs5ePfd2hgpVZCwhePZp555ZnXjH0SfF_QOcAG90UmM7vBtoXSIuWZsu_WsbzcYh9CuOZcZM6I92wry7nixrpttpj27bLu6u4qga5uoUna_g5b7GKgRJks8Rfc1f1qoEoJEZLYJyVGLOI_pRAhYthhmxU0AT8-3xN2cTz7Mf2WLk7nJ9PDRVooZW2qQReaK6m51lhV3OVaV1BYSjhXcKcMGEdRZhxIJ5aV5WhVKZ0BsAWUcsK-jLo3Q3-7whB9W4cCmwY67FfBCxK0KldKvgUVgtZBz5mwvf_Qaxquo0GeKG64VsoR9XWkiqEPYcDK3wy0t-HRC-6f3PDkhv_rBrGfnxVXyxbLNfmyfgIORuC-bvDxdSU_W8xeJNOxow4RH9YdMPz22kiT-5_f5_7Izs-Pjs-mXhO_O_IV9B6uhjr4i_OMC0WfQebSCPkHvhupuQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1560706449</pqid></control><display><type>article</type><title>Combining animal movements and behavioural data to detect behavioural states</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Nams, Vilis O ; Moorcroft, Paul</creator><contributor>Moorcroft, Paul ; Moorcroft, Paul</contributor><creatorcontrib>Nams, Vilis O ; Moorcroft, Paul ; Moorcroft, Paul ; Moorcroft, Paul</creatorcontrib><description>Animal movement paths show variation in space caused by qualitative shifts in behaviours. I present a method that (1) uses both movement path data and ancillary sensor data to detect natural breakpoints in animal behaviour and (2) groups these segments into different behavioural states. The method can also combine analyses of different path segments or paths from different individuals. It does not assume any underlying movement mechanism. I give an example with simulated data. I also show the effects of random variation, # of states and # of segments on this method. I present a case study of a fisher movement path spanning 8 days, which shows four distinct behavioural states divided into 28 path segments when only turning angles and speed were considered. When accelerometer data were added, the analysis shows seven distinct behavioural states divided into 41 path segments.</description><identifier>ISSN: 1461-023X</identifier><identifier>EISSN: 1461-0248</identifier><identifier>DOI: 10.1111/ele.12328</identifier><identifier>PMID: 25040789</identifier><language>eng</language><publisher>England: Blackwell Science</publisher><subject>Algorithms ; Animal behavior ; Animal migration ; Animal movement ; Animals ; Behavior, Animal ; behavioural states ; Biogeography ; breakpoints ; case studies ; Computer Simulation ; correlated random walk ; Models, Biological ; Motor Activity ; segments ; spatial scale ; turning angles</subject><ispartof>Ecology letters, 2014-10, Vol.17 (10), p.1228-1237</ispartof><rights>2014 John Wiley &amp; Sons Ltd/CNRS</rights><rights>2014 John Wiley &amp; Sons Ltd/CNRS.</rights><rights>Copyright © 2014 John Wiley &amp; Sons Ltd/CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4488-6a6c60436066eff09566fac836099c0947a7999c279a391bf80e84d397aa8cad3</citedby><cites>FETCH-LOGICAL-c4488-6a6c60436066eff09566fac836099c0947a7999c279a391bf80e84d397aa8cad3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fele.12328$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fele.12328$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25040789$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Moorcroft, Paul</contributor><contributor>Moorcroft, Paul</contributor><creatorcontrib>Nams, Vilis O</creatorcontrib><creatorcontrib>Moorcroft, Paul</creatorcontrib><title>Combining animal movements and behavioural data to detect behavioural states</title><title>Ecology letters</title><addtitle>Ecol Lett</addtitle><description>Animal movement paths show variation in space caused by qualitative shifts in behaviours. I present a method that (1) uses both movement path data and ancillary sensor data to detect natural breakpoints in animal behaviour and (2) groups these segments into different behavioural states. The method can also combine analyses of different path segments or paths from different individuals. It does not assume any underlying movement mechanism. I give an example with simulated data. I also show the effects of random variation, # of states and # of segments on this method. I present a case study of a fisher movement path spanning 8 days, which shows four distinct behavioural states divided into 28 path segments when only turning angles and speed were considered. When accelerometer data were added, the analysis shows seven distinct behavioural states divided into 41 path segments.</description><subject>Algorithms</subject><subject>Animal behavior</subject><subject>Animal migration</subject><subject>Animal movement</subject><subject>Animals</subject><subject>Behavior, Animal</subject><subject>behavioural states</subject><subject>Biogeography</subject><subject>breakpoints</subject><subject>case studies</subject><subject>Computer Simulation</subject><subject>correlated random walk</subject><subject>Models, Biological</subject><subject>Motor Activity</subject><subject>segments</subject><subject>spatial scale</subject><subject>turning angles</subject><issn>1461-023X</issn><issn>1461-0248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkk1P3DAQhi1UVOjSQ_9AicSlPQTs2PHHEVbLFmlVhCgqN2s2mdDQfEDs5ePfd2hgpVZCwhePZp555ZnXjH0SfF_QOcAG90UmM7vBtoXSIuWZsu_WsbzcYh9CuOZcZM6I92wry7nixrpttpj27bLu6u4qga5uoUna_g5b7GKgRJks8Rfc1f1qoEoJEZLYJyVGLOI_pRAhYthhmxU0AT8-3xN2cTz7Mf2WLk7nJ9PDRVooZW2qQReaK6m51lhV3OVaV1BYSjhXcKcMGEdRZhxIJ5aV5WhVKZ0BsAWUcsK-jLo3Q3-7whB9W4cCmwY67FfBCxK0KldKvgUVgtZBz5mwvf_Qaxquo0GeKG64VsoR9XWkiqEPYcDK3wy0t-HRC-6f3PDkhv_rBrGfnxVXyxbLNfmyfgIORuC-bvDxdSU_W8xeJNOxow4RH9YdMPz22kiT-5_f5_7Izs-Pjs-mXhO_O_IV9B6uhjr4i_OMC0WfQebSCPkHvhupuQ</recordid><startdate>201410</startdate><enddate>201410</enddate><creator>Nams, Vilis O</creator><creator>Moorcroft, Paul</creator><general>Blackwell Science</general><general>Blackwell Publishing Ltd</general><scope>FBQ</scope><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7SS</scope><scope>7U9</scope><scope>C1K</scope><scope>H94</scope><scope>M7N</scope><scope>7X8</scope></search><sort><creationdate>201410</creationdate><title>Combining animal movements and behavioural data to detect behavioural states</title><author>Nams, Vilis O ; Moorcroft, Paul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4488-6a6c60436066eff09566fac836099c0947a7999c279a391bf80e84d397aa8cad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Animal behavior</topic><topic>Animal migration</topic><topic>Animal movement</topic><topic>Animals</topic><topic>Behavior, Animal</topic><topic>behavioural states</topic><topic>Biogeography</topic><topic>breakpoints</topic><topic>case studies</topic><topic>Computer Simulation</topic><topic>correlated random walk</topic><topic>Models, Biological</topic><topic>Motor Activity</topic><topic>segments</topic><topic>spatial scale</topic><topic>turning angles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nams, Vilis O</creatorcontrib><creatorcontrib>Moorcroft, Paul</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Virology and AIDS Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>MEDLINE - Academic</collection><jtitle>Ecology letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nams, Vilis O</au><au>Moorcroft, Paul</au><au>Moorcroft, Paul</au><au>Moorcroft, Paul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combining animal movements and behavioural data to detect behavioural states</atitle><jtitle>Ecology letters</jtitle><addtitle>Ecol Lett</addtitle><date>2014-10</date><risdate>2014</risdate><volume>17</volume><issue>10</issue><spage>1228</spage><epage>1237</epage><pages>1228-1237</pages><issn>1461-023X</issn><eissn>1461-0248</eissn><abstract>Animal movement paths show variation in space caused by qualitative shifts in behaviours. I present a method that (1) uses both movement path data and ancillary sensor data to detect natural breakpoints in animal behaviour and (2) groups these segments into different behavioural states. The method can also combine analyses of different path segments or paths from different individuals. It does not assume any underlying movement mechanism. I give an example with simulated data. I also show the effects of random variation, # of states and # of segments on this method. I present a case study of a fisher movement path spanning 8 days, which shows four distinct behavioural states divided into 28 path segments when only turning angles and speed were considered. When accelerometer data were added, the analysis shows seven distinct behavioural states divided into 41 path segments.</abstract><cop>England</cop><pub>Blackwell Science</pub><pmid>25040789</pmid><doi>10.1111/ele.12328</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1461-023X
ispartof Ecology letters, 2014-10, Vol.17 (10), p.1228-1237
issn 1461-023X
1461-0248
language eng
recordid cdi_proquest_miscellaneous_1566845443
source MEDLINE; Access via Wiley Online Library
subjects Algorithms
Animal behavior
Animal migration
Animal movement
Animals
Behavior, Animal
behavioural states
Biogeography
breakpoints
case studies
Computer Simulation
correlated random walk
Models, Biological
Motor Activity
segments
spatial scale
turning angles
title Combining animal movements and behavioural data to detect behavioural states
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T12%3A35%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combining%20animal%20movements%20and%20behavioural%20data%20to%20detect%20behavioural%20states&rft.jtitle=Ecology%20letters&rft.au=Nams,%20Vilis%20O&rft.date=2014-10&rft.volume=17&rft.issue=10&rft.spage=1228&rft.epage=1237&rft.pages=1228-1237&rft.issn=1461-023X&rft.eissn=1461-0248&rft_id=info:doi/10.1111/ele.12328&rft_dat=%3Cproquest_cross%3E3425994771%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1560706449&rft_id=info:pmid/25040789&rfr_iscdi=true