Fuzzy multiobjective models for optimal operation of a hydropower system

Optimal operation models for a hydropower system using new fuzzy multiobjective mathematical programming models are developed and evaluated in this study. The models use (i) mixed integer nonlinear programming (MINLP) with binary variables and (ii) integrate a new turbine unit commitment formulation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water resources research 2013-06, Vol.49 (6), p.3180-3193
Hauptverfasser: Teegavarapu, Ramesh S. V., Ferreira, André R., Simonovic, Slobodan P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3193
container_issue 6
container_start_page 3180
container_title Water resources research
container_volume 49
creator Teegavarapu, Ramesh S. V.
Ferreira, André R.
Simonovic, Slobodan P.
description Optimal operation models for a hydropower system using new fuzzy multiobjective mathematical programming models are developed and evaluated in this study. The models use (i) mixed integer nonlinear programming (MINLP) with binary variables and (ii) integrate a new turbine unit commitment formulation along with water quality constraints used for evaluation of reservoir downstream impairment. Reardon method used in solution of genetic algorithm optimization problems forms the basis for development of a new fuzzy multiobjective hydropower system optimization model with creation of Reardon type fuzzy membership functions. The models are applied to a real‐life hydropower reservoir system in Brazil. Genetic Algorithms (GAs) are used to (i) solve the optimization formulations to avoid computational intractability and combinatorial problems associated with binary variables in unit commitment, (ii) efficiently address Reardon method formulations, and (iii) deal with local optimal solutions obtained from the use of traditional gradient‐based solvers. Decision maker's preferences are incorporated within fuzzy mathematical programming formulations to obtain compromise operating rules for a multiobjective reservoir operation problem dominated by conflicting goals of energy production, water quality and conservation releases. Results provide insight into compromise operation rules obtained using the new Reardon fuzzy multiobjective optimization framework and confirm its applicability to a variety of multiobjective water resources problems. Key Points New fuzzy multi‐objective optimization models New Unit committement problem formulation using MINLP Multi‐objective framework considering special type of fuzzy membership functions
doi_str_mv 10.1002/wrcr.20224
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_1566845136</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3545675201</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3964-21e4f7f802dc54f38dceea77dd5101910382319daeb23416e7369ce730074a883</originalsourceid><addsrcrecordid>eNpdkM1OwzAQhC0EEqVw4QkiceGS4rUdOzmiiqaIClD56dEyiSNSkjrYCSV9etwWceCys4dvVjuD0DngEWBMrtY2syOCCWEHaAAJY6FIBD1EA4wZDYEm4hidOLfEGFjExQBNJ91m0wd1V7WleVvqrC2_dFCbXFcuKIwNTNOWtaq8aqs8swpMEajgvc-tacxa28D1rtX1KToqVOX02a8O0cvk5nk8DWcP6e34ehYqmnAWEtCsEEWMSZ5FrKBxnmmthMjzCDAkgGlMKCS50m-EMuBaUJ5kfmIsmIpjOkSX-7uNNZ-ddq2sS5fpqlIrbTonIeI8ZhFQ7tGLf-jSdHblv5PAGcExRAQ8BXtqXVa6l431cW0vActto3LbqNw1Khfz8Xy3eU-495Q--vefR9kPyQUVkVzcp3KSpnfR42sin-gPz4t6Lg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1642081521</pqid></control><display><type>article</type><title>Fuzzy multiobjective models for optimal operation of a hydropower system</title><source>Wiley-Blackwell AGU Digital Library</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library All Journals</source><creator>Teegavarapu, Ramesh S. V. ; Ferreira, André R. ; Simonovic, Slobodan P.</creator><creatorcontrib>Teegavarapu, Ramesh S. V. ; Ferreira, André R. ; Simonovic, Slobodan P.</creatorcontrib><description>Optimal operation models for a hydropower system using new fuzzy multiobjective mathematical programming models are developed and evaluated in this study. The models use (i) mixed integer nonlinear programming (MINLP) with binary variables and (ii) integrate a new turbine unit commitment formulation along with water quality constraints used for evaluation of reservoir downstream impairment. Reardon method used in solution of genetic algorithm optimization problems forms the basis for development of a new fuzzy multiobjective hydropower system optimization model with creation of Reardon type fuzzy membership functions. The models are applied to a real‐life hydropower reservoir system in Brazil. Genetic Algorithms (GAs) are used to (i) solve the optimization formulations to avoid computational intractability and combinatorial problems associated with binary variables in unit commitment, (ii) efficiently address Reardon method formulations, and (iii) deal with local optimal solutions obtained from the use of traditional gradient‐based solvers. Decision maker's preferences are incorporated within fuzzy mathematical programming formulations to obtain compromise operating rules for a multiobjective reservoir operation problem dominated by conflicting goals of energy production, water quality and conservation releases. Results provide insight into compromise operation rules obtained using the new Reardon fuzzy multiobjective optimization framework and confirm its applicability to a variety of multiobjective water resources problems. Key Points New fuzzy multi‐objective optimization models New Unit committement problem formulation using MINLP Multi‐objective framework considering special type of fuzzy membership functions</description><identifier>ISSN: 0043-1397</identifier><identifier>EISSN: 1944-7973</identifier><identifier>DOI: 10.1002/wrcr.20224</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Algorithms ; Energy conservation ; Fuzzy logic ; fuzzy mathematical programming ; Genetic algorithms ; Hydroelectric power ; hydropower system ; Mathematical programming ; mixed integer nonlinear programming (MINLP) ; multiobjective framework ; Nonlinear programming ; Optimization ; Reardon method ; Reservoir operation ; Turbines ; unit commitment ; Water quality ; Water resources</subject><ispartof>Water resources research, 2013-06, Vol.49 (6), p.3180-3193</ispartof><rights>2013. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3964-21e4f7f802dc54f38dceea77dd5101910382319daeb23416e7369ce730074a883</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fwrcr.20224$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fwrcr.20224$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,11513,27923,27924,45573,45574,46467,46891</link.rule.ids></links><search><creatorcontrib>Teegavarapu, Ramesh S. V.</creatorcontrib><creatorcontrib>Ferreira, André R.</creatorcontrib><creatorcontrib>Simonovic, Slobodan P.</creatorcontrib><title>Fuzzy multiobjective models for optimal operation of a hydropower system</title><title>Water resources research</title><addtitle>Water Resour. Res</addtitle><description>Optimal operation models for a hydropower system using new fuzzy multiobjective mathematical programming models are developed and evaluated in this study. The models use (i) mixed integer nonlinear programming (MINLP) with binary variables and (ii) integrate a new turbine unit commitment formulation along with water quality constraints used for evaluation of reservoir downstream impairment. Reardon method used in solution of genetic algorithm optimization problems forms the basis for development of a new fuzzy multiobjective hydropower system optimization model with creation of Reardon type fuzzy membership functions. The models are applied to a real‐life hydropower reservoir system in Brazil. Genetic Algorithms (GAs) are used to (i) solve the optimization formulations to avoid computational intractability and combinatorial problems associated with binary variables in unit commitment, (ii) efficiently address Reardon method formulations, and (iii) deal with local optimal solutions obtained from the use of traditional gradient‐based solvers. Decision maker's preferences are incorporated within fuzzy mathematical programming formulations to obtain compromise operating rules for a multiobjective reservoir operation problem dominated by conflicting goals of energy production, water quality and conservation releases. Results provide insight into compromise operation rules obtained using the new Reardon fuzzy multiobjective optimization framework and confirm its applicability to a variety of multiobjective water resources problems. Key Points New fuzzy multi‐objective optimization models New Unit committement problem formulation using MINLP Multi‐objective framework considering special type of fuzzy membership functions</description><subject>Algorithms</subject><subject>Energy conservation</subject><subject>Fuzzy logic</subject><subject>fuzzy mathematical programming</subject><subject>Genetic algorithms</subject><subject>Hydroelectric power</subject><subject>hydropower system</subject><subject>Mathematical programming</subject><subject>mixed integer nonlinear programming (MINLP)</subject><subject>multiobjective framework</subject><subject>Nonlinear programming</subject><subject>Optimization</subject><subject>Reardon method</subject><subject>Reservoir operation</subject><subject>Turbines</subject><subject>unit commitment</subject><subject>Water quality</subject><subject>Water resources</subject><issn>0043-1397</issn><issn>1944-7973</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpdkM1OwzAQhC0EEqVw4QkiceGS4rUdOzmiiqaIClD56dEyiSNSkjrYCSV9etwWceCys4dvVjuD0DngEWBMrtY2syOCCWEHaAAJY6FIBD1EA4wZDYEm4hidOLfEGFjExQBNJ91m0wd1V7WleVvqrC2_dFCbXFcuKIwNTNOWtaq8aqs8swpMEajgvc-tacxa28D1rtX1KToqVOX02a8O0cvk5nk8DWcP6e34ehYqmnAWEtCsEEWMSZ5FrKBxnmmthMjzCDAkgGlMKCS50m-EMuBaUJ5kfmIsmIpjOkSX-7uNNZ-ddq2sS5fpqlIrbTonIeI8ZhFQ7tGLf-jSdHblv5PAGcExRAQ8BXtqXVa6l431cW0vActto3LbqNw1Khfz8Xy3eU-495Q--vefR9kPyQUVkVzcp3KSpnfR42sin-gPz4t6Lg</recordid><startdate>201306</startdate><enddate>201306</enddate><creator>Teegavarapu, Ramesh S. V.</creator><creator>Ferreira, André R.</creator><creator>Simonovic, Slobodan P.</creator><general>Blackwell Publishing Ltd</general><general>John Wiley &amp; Sons, Inc</general><scope>BSCLL</scope><scope>7QH</scope><scope>7QL</scope><scope>7T7</scope><scope>7TG</scope><scope>7U9</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H94</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>H97</scope></search><sort><creationdate>201306</creationdate><title>Fuzzy multiobjective models for optimal operation of a hydropower system</title><author>Teegavarapu, Ramesh S. V. ; Ferreira, André R. ; Simonovic, Slobodan P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3964-21e4f7f802dc54f38dceea77dd5101910382319daeb23416e7369ce730074a883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Energy conservation</topic><topic>Fuzzy logic</topic><topic>fuzzy mathematical programming</topic><topic>Genetic algorithms</topic><topic>Hydroelectric power</topic><topic>hydropower system</topic><topic>Mathematical programming</topic><topic>mixed integer nonlinear programming (MINLP)</topic><topic>multiobjective framework</topic><topic>Nonlinear programming</topic><topic>Optimization</topic><topic>Reardon method</topic><topic>Reservoir operation</topic><topic>Turbines</topic><topic>unit commitment</topic><topic>Water quality</topic><topic>Water resources</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Teegavarapu, Ramesh S. V.</creatorcontrib><creatorcontrib>Ferreira, André R.</creatorcontrib><creatorcontrib>Simonovic, Slobodan P.</creatorcontrib><collection>Istex</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><jtitle>Water resources research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Teegavarapu, Ramesh S. V.</au><au>Ferreira, André R.</au><au>Simonovic, Slobodan P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fuzzy multiobjective models for optimal operation of a hydropower system</atitle><jtitle>Water resources research</jtitle><addtitle>Water Resour. Res</addtitle><date>2013-06</date><risdate>2013</risdate><volume>49</volume><issue>6</issue><spage>3180</spage><epage>3193</epage><pages>3180-3193</pages><issn>0043-1397</issn><eissn>1944-7973</eissn><abstract>Optimal operation models for a hydropower system using new fuzzy multiobjective mathematical programming models are developed and evaluated in this study. The models use (i) mixed integer nonlinear programming (MINLP) with binary variables and (ii) integrate a new turbine unit commitment formulation along with water quality constraints used for evaluation of reservoir downstream impairment. Reardon method used in solution of genetic algorithm optimization problems forms the basis for development of a new fuzzy multiobjective hydropower system optimization model with creation of Reardon type fuzzy membership functions. The models are applied to a real‐life hydropower reservoir system in Brazil. Genetic Algorithms (GAs) are used to (i) solve the optimization formulations to avoid computational intractability and combinatorial problems associated with binary variables in unit commitment, (ii) efficiently address Reardon method formulations, and (iii) deal with local optimal solutions obtained from the use of traditional gradient‐based solvers. Decision maker's preferences are incorporated within fuzzy mathematical programming formulations to obtain compromise operating rules for a multiobjective reservoir operation problem dominated by conflicting goals of energy production, water quality and conservation releases. Results provide insight into compromise operation rules obtained using the new Reardon fuzzy multiobjective optimization framework and confirm its applicability to a variety of multiobjective water resources problems. Key Points New fuzzy multi‐objective optimization models New Unit committement problem formulation using MINLP Multi‐objective framework considering special type of fuzzy membership functions</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/wrcr.20224</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0043-1397
ispartof Water resources research, 2013-06, Vol.49 (6), p.3180-3193
issn 0043-1397
1944-7973
language eng
recordid cdi_proquest_miscellaneous_1566845136
source Wiley-Blackwell AGU Digital Library; EZB-FREE-00999 freely available EZB journals; Wiley Online Library All Journals
subjects Algorithms
Energy conservation
Fuzzy logic
fuzzy mathematical programming
Genetic algorithms
Hydroelectric power
hydropower system
Mathematical programming
mixed integer nonlinear programming (MINLP)
multiobjective framework
Nonlinear programming
Optimization
Reardon method
Reservoir operation
Turbines
unit commitment
Water quality
Water resources
title Fuzzy multiobjective models for optimal operation of a hydropower system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T15%3A14%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fuzzy%20multiobjective%20models%20for%20optimal%20operation%20of%20a%20hydropower%20system&rft.jtitle=Water%20resources%20research&rft.au=Teegavarapu,%20Ramesh%20S.%20V.&rft.date=2013-06&rft.volume=49&rft.issue=6&rft.spage=3180&rft.epage=3193&rft.pages=3180-3193&rft.issn=0043-1397&rft.eissn=1944-7973&rft_id=info:doi/10.1002/wrcr.20224&rft_dat=%3Cproquest_wiley%3E3545675201%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1642081521&rft_id=info:pmid/&rfr_iscdi=true