Effects of Iron on Optical Properties of Dissolved Organic Matter

Iron is a source of interference in the spectroscopic analysis of dissolved organic matter (DOM); however, its effects on commonly employed ultraviolet and visible (UV–vis) light adsorption and fluorescence measurements are poorly defined. Here, we describe the effects of iron­(II) and iron­(III) on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2014-09, Vol.48 (17), p.10098-10106
Hauptverfasser: Poulin, Brett A, Ryan, Joseph N, Aiken, George R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10106
container_issue 17
container_start_page 10098
container_title Environmental science & technology
container_volume 48
creator Poulin, Brett A
Ryan, Joseph N
Aiken, George R
description Iron is a source of interference in the spectroscopic analysis of dissolved organic matter (DOM); however, its effects on commonly employed ultraviolet and visible (UV–vis) light adsorption and fluorescence measurements are poorly defined. Here, we describe the effects of iron­(II) and iron­(III) on the UV–vis absorption and fluorescence of solutions containing two DOM fractions and two surface water samples. In each case, regardless of DOM composition, UV–vis absorption increased linearly with increasing iron­(III). Correction factors were derived using iron­(III) absorption coefficients determined at wavelengths commonly used to characterize DOM. Iron­(III) addition increased specific UV absorbances (SUVA) and decreased the absorption ratios (E 2:E 3) and spectral slope ratios (S R) of DOM samples. Both iron­(II) and iron­(III) quenched DOM fluorescence at pH 6.7. The degree and region of fluorescence quenching varied with the iron:DOC concentration ratio, DOM composition, and pH. Regions of the fluorescence spectra associated with greater DOM conjugation were more susceptible to iron quenching, and DOM fluorescence indices were sensitive to the presence of both forms of iron. Analyses of the excitation–emission matrices using a 7- and 13-component parallel factor analysis (PARAFAC) model showed low PARAFAC sensitivity to iron addition.
doi_str_mv 10.1021/es502670r
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1566842757</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1566842757</sourcerecordid><originalsourceid>FETCH-LOGICAL-a442t-6cb5d53e589afd75bb244e5919e6439b124b3c9c672b2c71febe91b6c31a9ca53</originalsourceid><addsrcrecordid>eNqNkU1Lw0AQhhdRbK0e_AMSEEEP0f1O9lhq1YJSDwrewu5mIilpNu4mgv_e1NYiehEG5jAPzzDzInRM8CXBlFxBEJjKBPsdNCSC4likguyiIcaExYrJlwE6CGGBMaYMp_toQAVOOePJEI2nRQG2DZEropl3ddTXvGlLq6vo0bsGfFvC1_S6DMFV75BHc_-q69JGD7ptwR-ivUJXAY42fYSeb6ZPk7v4fn47m4zvY805bWNpjcgFA5EqXeSJMIZyDkIRBZIzZQjlhlllZUINtQkpwIAiRlpGtLJasBE6X3sb7946CG22LIOFqtI1uC5kREiZcpqI5B-oUJJila6sp7_Qhet83R-yEhLCmZC4py7WlPUuBA9F1vhyqf1HRnC2iiDbRtCzJxtjZ5aQb8nvn_fA2RrQNvzY9kf0CetLisg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1561143560</pqid></control><display><type>article</type><title>Effects of Iron on Optical Properties of Dissolved Organic Matter</title><source>MEDLINE</source><source>ACS Publications</source><creator>Poulin, Brett A ; Ryan, Joseph N ; Aiken, George R</creator><creatorcontrib>Poulin, Brett A ; Ryan, Joseph N ; Aiken, George R</creatorcontrib><description>Iron is a source of interference in the spectroscopic analysis of dissolved organic matter (DOM); however, its effects on commonly employed ultraviolet and visible (UV–vis) light adsorption and fluorescence measurements are poorly defined. Here, we describe the effects of iron­(II) and iron­(III) on the UV–vis absorption and fluorescence of solutions containing two DOM fractions and two surface water samples. In each case, regardless of DOM composition, UV–vis absorption increased linearly with increasing iron­(III). Correction factors were derived using iron­(III) absorption coefficients determined at wavelengths commonly used to characterize DOM. Iron­(III) addition increased specific UV absorbances (SUVA) and decreased the absorption ratios (E 2:E 3) and spectral slope ratios (S R) of DOM samples. Both iron­(II) and iron­(III) quenched DOM fluorescence at pH 6.7. The degree and region of fluorescence quenching varied with the iron:DOC concentration ratio, DOM composition, and pH. Regions of the fluorescence spectra associated with greater DOM conjugation were more susceptible to iron quenching, and DOM fluorescence indices were sensitive to the presence of both forms of iron. Analyses of the excitation–emission matrices using a 7- and 13-component parallel factor analysis (PARAFAC) model showed low PARAFAC sensitivity to iron addition.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/es502670r</identifier><identifier>PMID: 25084347</identifier><identifier>CODEN: ESTHAG</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Adsorption ; Fluorescence ; Hydrogen-Ion Concentration ; Hydrophobic and Hydrophilic Interactions ; Iron ; Iron - chemistry ; Optical Phenomena ; Organic Chemicals - chemistry ; Oxidation-Reduction ; Rivers - chemistry ; Solubility ; Solutions ; Spectrometry, Fluorescence ; Spectrophotometry, Ultraviolet ; Surface Properties ; Surface water ; Ultraviolet radiation ; Water - chemistry</subject><ispartof>Environmental science &amp; technology, 2014-09, Vol.48 (17), p.10098-10106</ispartof><rights>Copyright American Chemical Society Sep 2, 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a442t-6cb5d53e589afd75bb244e5919e6439b124b3c9c672b2c71febe91b6c31a9ca53</citedby><cites>FETCH-LOGICAL-a442t-6cb5d53e589afd75bb244e5919e6439b124b3c9c672b2c71febe91b6c31a9ca53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/es502670r$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/es502670r$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27075,27923,27924,56737,56787</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25084347$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Poulin, Brett A</creatorcontrib><creatorcontrib>Ryan, Joseph N</creatorcontrib><creatorcontrib>Aiken, George R</creatorcontrib><title>Effects of Iron on Optical Properties of Dissolved Organic Matter</title><title>Environmental science &amp; technology</title><addtitle>Environ. Sci. Technol</addtitle><description>Iron is a source of interference in the spectroscopic analysis of dissolved organic matter (DOM); however, its effects on commonly employed ultraviolet and visible (UV–vis) light adsorption and fluorescence measurements are poorly defined. Here, we describe the effects of iron­(II) and iron­(III) on the UV–vis absorption and fluorescence of solutions containing two DOM fractions and two surface water samples. In each case, regardless of DOM composition, UV–vis absorption increased linearly with increasing iron­(III). Correction factors were derived using iron­(III) absorption coefficients determined at wavelengths commonly used to characterize DOM. Iron­(III) addition increased specific UV absorbances (SUVA) and decreased the absorption ratios (E 2:E 3) and spectral slope ratios (S R) of DOM samples. Both iron­(II) and iron­(III) quenched DOM fluorescence at pH 6.7. The degree and region of fluorescence quenching varied with the iron:DOC concentration ratio, DOM composition, and pH. Regions of the fluorescence spectra associated with greater DOM conjugation were more susceptible to iron quenching, and DOM fluorescence indices were sensitive to the presence of both forms of iron. Analyses of the excitation–emission matrices using a 7- and 13-component parallel factor analysis (PARAFAC) model showed low PARAFAC sensitivity to iron addition.</description><subject>Adsorption</subject><subject>Fluorescence</subject><subject>Hydrogen-Ion Concentration</subject><subject>Hydrophobic and Hydrophilic Interactions</subject><subject>Iron</subject><subject>Iron - chemistry</subject><subject>Optical Phenomena</subject><subject>Organic Chemicals - chemistry</subject><subject>Oxidation-Reduction</subject><subject>Rivers - chemistry</subject><subject>Solubility</subject><subject>Solutions</subject><subject>Spectrometry, Fluorescence</subject><subject>Spectrophotometry, Ultraviolet</subject><subject>Surface Properties</subject><subject>Surface water</subject><subject>Ultraviolet radiation</subject><subject>Water - chemistry</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU1Lw0AQhhdRbK0e_AMSEEEP0f1O9lhq1YJSDwrewu5mIilpNu4mgv_e1NYiehEG5jAPzzDzInRM8CXBlFxBEJjKBPsdNCSC4likguyiIcaExYrJlwE6CGGBMaYMp_toQAVOOePJEI2nRQG2DZEropl3ddTXvGlLq6vo0bsGfFvC1_S6DMFV75BHc_-q69JGD7ptwR-ivUJXAY42fYSeb6ZPk7v4fn47m4zvY805bWNpjcgFA5EqXeSJMIZyDkIRBZIzZQjlhlllZUINtQkpwIAiRlpGtLJasBE6X3sb7946CG22LIOFqtI1uC5kREiZcpqI5B-oUJJila6sp7_Qhet83R-yEhLCmZC4py7WlPUuBA9F1vhyqf1HRnC2iiDbRtCzJxtjZ5aQb8nvn_fA2RrQNvzY9kf0CetLisg</recordid><startdate>20140902</startdate><enddate>20140902</enddate><creator>Poulin, Brett A</creator><creator>Ryan, Joseph N</creator><creator>Aiken, George R</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><scope>7QH</scope><scope>7TV</scope><scope>7UA</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope></search><sort><creationdate>20140902</creationdate><title>Effects of Iron on Optical Properties of Dissolved Organic Matter</title><author>Poulin, Brett A ; Ryan, Joseph N ; Aiken, George R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a442t-6cb5d53e589afd75bb244e5919e6439b124b3c9c672b2c71febe91b6c31a9ca53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Adsorption</topic><topic>Fluorescence</topic><topic>Hydrogen-Ion Concentration</topic><topic>Hydrophobic and Hydrophilic Interactions</topic><topic>Iron</topic><topic>Iron - chemistry</topic><topic>Optical Phenomena</topic><topic>Organic Chemicals - chemistry</topic><topic>Oxidation-Reduction</topic><topic>Rivers - chemistry</topic><topic>Solubility</topic><topic>Solutions</topic><topic>Spectrometry, Fluorescence</topic><topic>Spectrophotometry, Ultraviolet</topic><topic>Surface Properties</topic><topic>Surface water</topic><topic>Ultraviolet radiation</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Poulin, Brett A</creatorcontrib><creatorcontrib>Ryan, Joseph N</creatorcontrib><creatorcontrib>Aiken, George R</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Aqualine</collection><collection>Pollution Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Environmental science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Poulin, Brett A</au><au>Ryan, Joseph N</au><au>Aiken, George R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of Iron on Optical Properties of Dissolved Organic Matter</atitle><jtitle>Environmental science &amp; technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2014-09-02</date><risdate>2014</risdate><volume>48</volume><issue>17</issue><spage>10098</spage><epage>10106</epage><pages>10098-10106</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><coden>ESTHAG</coden><abstract>Iron is a source of interference in the spectroscopic analysis of dissolved organic matter (DOM); however, its effects on commonly employed ultraviolet and visible (UV–vis) light adsorption and fluorescence measurements are poorly defined. Here, we describe the effects of iron­(II) and iron­(III) on the UV–vis absorption and fluorescence of solutions containing two DOM fractions and two surface water samples. In each case, regardless of DOM composition, UV–vis absorption increased linearly with increasing iron­(III). Correction factors were derived using iron­(III) absorption coefficients determined at wavelengths commonly used to characterize DOM. Iron­(III) addition increased specific UV absorbances (SUVA) and decreased the absorption ratios (E 2:E 3) and spectral slope ratios (S R) of DOM samples. Both iron­(II) and iron­(III) quenched DOM fluorescence at pH 6.7. The degree and region of fluorescence quenching varied with the iron:DOC concentration ratio, DOM composition, and pH. Regions of the fluorescence spectra associated with greater DOM conjugation were more susceptible to iron quenching, and DOM fluorescence indices were sensitive to the presence of both forms of iron. Analyses of the excitation–emission matrices using a 7- and 13-component parallel factor analysis (PARAFAC) model showed low PARAFAC sensitivity to iron addition.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>25084347</pmid><doi>10.1021/es502670r</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0013-936X
ispartof Environmental science & technology, 2014-09, Vol.48 (17), p.10098-10106
issn 0013-936X
1520-5851
language eng
recordid cdi_proquest_miscellaneous_1566842757
source MEDLINE; ACS Publications
subjects Adsorption
Fluorescence
Hydrogen-Ion Concentration
Hydrophobic and Hydrophilic Interactions
Iron
Iron - chemistry
Optical Phenomena
Organic Chemicals - chemistry
Oxidation-Reduction
Rivers - chemistry
Solubility
Solutions
Spectrometry, Fluorescence
Spectrophotometry, Ultraviolet
Surface Properties
Surface water
Ultraviolet radiation
Water - chemistry
title Effects of Iron on Optical Properties of Dissolved Organic Matter
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T21%3A20%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20Iron%20on%20Optical%20Properties%20of%20Dissolved%20Organic%20Matter&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Poulin,%20Brett%20A&rft.date=2014-09-02&rft.volume=48&rft.issue=17&rft.spage=10098&rft.epage=10106&rft.pages=10098-10106&rft.issn=0013-936X&rft.eissn=1520-5851&rft.coden=ESTHAG&rft_id=info:doi/10.1021/es502670r&rft_dat=%3Cproquest_cross%3E1566842757%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1561143560&rft_id=info:pmid/25084347&rfr_iscdi=true