Pore-scale evaluation of uranyl phosphate precipitation in a model groundwater system

Key Points In situ uranyl phosphate precipitation is fast on the time scale of remediation Ca2+ & SO42‐ affect uranyl phosphate precipitation rate and morphology Only chernikovite is formed, and it blocks pore spaces and reduces mixing The abiotic precipitation of uranium (U(VI)) was evaluated i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water Resources Research, 49(2):874-890 49(2):874-890, 2013-02, Vol.49 (2), p.874-890
Hauptverfasser: Fanizza, Michael F., Yoon, Hongkyu, Zhang, Changyong, Oostrom, Martinus, Wietsma, Thomas W., Hess, Nancy J., Bowden, Mark E., Strathmann, Timothy J., Finneran, Kevin T., Werth, Charles J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 890
container_issue 2
container_start_page 874
container_title Water Resources Research, 49(2):874-890
container_volume 49
creator Fanizza, Michael F.
Yoon, Hongkyu
Zhang, Changyong
Oostrom, Martinus
Wietsma, Thomas W.
Hess, Nancy J.
Bowden, Mark E.
Strathmann, Timothy J.
Finneran, Kevin T.
Werth, Charles J.
description Key Points In situ uranyl phosphate precipitation is fast on the time scale of remediation Ca2+ & SO42‐ affect uranyl phosphate precipitation rate and morphology Only chernikovite is formed, and it blocks pore spaces and reduces mixing The abiotic precipitation of uranium (U(VI)) was evaluated in a microfluidic pore network (i.e., micromodel) to assess the efficacy of using a phosphate amendment to immobilize uranium in groundwater. U(VI) was mixed transverse to the direction of flow with hydrogen phosphate (HPO42−), in the presence or absence of calcium (Ca2+) or sulfate (SO42−), in order to identify precipitation rates, morphology and types of minerals formed, and effects of mineral precipitates on pore blockage. Precipitation occurred over the time scale of hours to days. Relative to when only U(VI) and HPO42− were present, precipitation rates were 2.3 times slower when SO42− was present, and 1.4 times faster when Ca2+ was present; larger crystals formed in the presence of SO42−. Raman backscattering spectroscopy and micro‐X‐ray diffraction results both showed that the only mineral precipitated was chernikovite, UO2HPO4 · 4H2O; energy dispersive X‐ray spectroscopy results indicate that Ca and S are not incorporated into the chernikovite lattice. A pore‐scale model was developed, and simulation results of saturation ratio (SR = Q/Ksp) suggest that chernikovite is the least thermodynamically favored mineral to precipitate (0 < SR < 1) compared to uranyl hydrogen phosphate and Na‐autunite (13 < SR < 40), and uranyl orthophosphate and Ca‐autunite (when Ca2+ is present; SR > 105). Fluorescent tracer studies and laser confocal microscopy images showed that densely aggregated precipitates blocked pores and reduced permeability. The results suggest that uranium precipitation with phosphate as chernikovite is rapid on the time scale of remediation for the conditions considered and can block pores, alter fluid flow paths, and potentially limit mixing and precipitation.
doi_str_mv 10.1002/wrcr.20088
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_1566842706</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1566842706</sourcerecordid><originalsourceid>FETCH-LOGICAL-a5248-3f8e996645ff710e19a5cdab3acb8116b25ba7f55403bc2ffc5bd7a2c585d6703</originalsourceid><addsrcrecordid>eNp90c1u1DAUBWCrAqlDYcMTWO0GIaXY8V-yRAOUojKgijJSN5bjXHfcZuJgJ0zn7XFJYcGClTffsa_vQeglJaeUkPLNLtp4WhJSVQdoQWvOC1Ur9gQtCOGsoKxWh-hZSreEUC6kWqCrryFCkazpAMNP001m9KHHweEpmn7f4WET0rAxI-AhgvWDH2fhe2zwNrTQ4ZsYpr7dZRNx2qcRts_RU2e6BC8ezyN09eH9t-XH4uLL2fny7UVhRMmrgrkK6lpKLpxTlACtjbCtaZixTUWpbErRGOWE4IQ1tnTOiqZVprSiEq1UhB2h4_nekEavk_Uj2I0NfQ921JQoKVWV0asZDTH8mCCNeuuTha4zPYQpaSqkrHipiMz05B96G6bY5y9oKnlJ8lCszur1rGwMKUVweoh-a-I-P6kfatAPNejfNWRMZ7zzHez_I_X6cnn5J1PMGZ-Xef83Y-KdloopoderM00_ff-8ul6902v2C4t9miY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1642081139</pqid></control><display><type>article</type><title>Pore-scale evaluation of uranyl phosphate precipitation in a model groundwater system</title><source>Access via Wiley Online Library</source><source>Wiley-Blackwell AGU Digital Library</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Fanizza, Michael F. ; Yoon, Hongkyu ; Zhang, Changyong ; Oostrom, Martinus ; Wietsma, Thomas W. ; Hess, Nancy J. ; Bowden, Mark E. ; Strathmann, Timothy J. ; Finneran, Kevin T. ; Werth, Charles J.</creator><creatorcontrib>Fanizza, Michael F. ; Yoon, Hongkyu ; Zhang, Changyong ; Oostrom, Martinus ; Wietsma, Thomas W. ; Hess, Nancy J. ; Bowden, Mark E. ; Strathmann, Timothy J. ; Finneran, Kevin T. ; Werth, Charles J. ; Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)</creatorcontrib><description>Key Points In situ uranyl phosphate precipitation is fast on the time scale of remediation Ca2+ &amp; SO42‐ affect uranyl phosphate precipitation rate and morphology Only chernikovite is formed, and it blocks pore spaces and reduces mixing The abiotic precipitation of uranium (U(VI)) was evaluated in a microfluidic pore network (i.e., micromodel) to assess the efficacy of using a phosphate amendment to immobilize uranium in groundwater. U(VI) was mixed transverse to the direction of flow with hydrogen phosphate (HPO42−), in the presence or absence of calcium (Ca2+) or sulfate (SO42−), in order to identify precipitation rates, morphology and types of minerals formed, and effects of mineral precipitates on pore blockage. Precipitation occurred over the time scale of hours to days. Relative to when only U(VI) and HPO42− were present, precipitation rates were 2.3 times slower when SO42− was present, and 1.4 times faster when Ca2+ was present; larger crystals formed in the presence of SO42−. Raman backscattering spectroscopy and micro‐X‐ray diffraction results both showed that the only mineral precipitated was chernikovite, UO2HPO4 · 4H2O; energy dispersive X‐ray spectroscopy results indicate that Ca and S are not incorporated into the chernikovite lattice. A pore‐scale model was developed, and simulation results of saturation ratio (SR = Q/Ksp) suggest that chernikovite is the least thermodynamically favored mineral to precipitate (0 &lt; SR &lt; 1) compared to uranyl hydrogen phosphate and Na‐autunite (13 &lt; SR &lt; 40), and uranyl orthophosphate and Ca‐autunite (when Ca2+ is present; SR &gt; 105). Fluorescent tracer studies and laser confocal microscopy images showed that densely aggregated precipitates blocked pores and reduced permeability. The results suggest that uranium precipitation with phosphate as chernikovite is rapid on the time scale of remediation for the conditions considered and can block pores, alter fluid flow paths, and potentially limit mixing and precipitation.</description><identifier>ISSN: 0043-1397</identifier><identifier>EISSN: 1944-7973</identifier><identifier>DOI: 10.1002/wrcr.20088</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Crystals ; Environmental Molecular Sciences Laboratory ; Fluid flow ; mixing ; Morphology ; pore scale ; Pores ; precipitation ; Spectrum analysis ; Uranium ; X-ray diffraction ; X-ray spectroscopy</subject><ispartof>Water Resources Research, 49(2):874-890, 2013-02, Vol.49 (2), p.874-890</ispartof><rights>2013. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a5248-3f8e996645ff710e19a5cdab3acb8116b25ba7f55403bc2ffc5bd7a2c585d6703</citedby><cites>FETCH-LOGICAL-a5248-3f8e996645ff710e19a5cdab3acb8116b25ba7f55403bc2ffc5bd7a2c585d6703</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fwrcr.20088$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fwrcr.20088$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,885,1417,11514,27924,27925,45574,45575,46468,46892</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1076678$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Fanizza, Michael F.</creatorcontrib><creatorcontrib>Yoon, Hongkyu</creatorcontrib><creatorcontrib>Zhang, Changyong</creatorcontrib><creatorcontrib>Oostrom, Martinus</creatorcontrib><creatorcontrib>Wietsma, Thomas W.</creatorcontrib><creatorcontrib>Hess, Nancy J.</creatorcontrib><creatorcontrib>Bowden, Mark E.</creatorcontrib><creatorcontrib>Strathmann, Timothy J.</creatorcontrib><creatorcontrib>Finneran, Kevin T.</creatorcontrib><creatorcontrib>Werth, Charles J.</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)</creatorcontrib><title>Pore-scale evaluation of uranyl phosphate precipitation in a model groundwater system</title><title>Water Resources Research, 49(2):874-890</title><addtitle>Water Resour. Res</addtitle><description>Key Points In situ uranyl phosphate precipitation is fast on the time scale of remediation Ca2+ &amp; SO42‐ affect uranyl phosphate precipitation rate and morphology Only chernikovite is formed, and it blocks pore spaces and reduces mixing The abiotic precipitation of uranium (U(VI)) was evaluated in a microfluidic pore network (i.e., micromodel) to assess the efficacy of using a phosphate amendment to immobilize uranium in groundwater. U(VI) was mixed transverse to the direction of flow with hydrogen phosphate (HPO42−), in the presence or absence of calcium (Ca2+) or sulfate (SO42−), in order to identify precipitation rates, morphology and types of minerals formed, and effects of mineral precipitates on pore blockage. Precipitation occurred over the time scale of hours to days. Relative to when only U(VI) and HPO42− were present, precipitation rates were 2.3 times slower when SO42− was present, and 1.4 times faster when Ca2+ was present; larger crystals formed in the presence of SO42−. Raman backscattering spectroscopy and micro‐X‐ray diffraction results both showed that the only mineral precipitated was chernikovite, UO2HPO4 · 4H2O; energy dispersive X‐ray spectroscopy results indicate that Ca and S are not incorporated into the chernikovite lattice. A pore‐scale model was developed, and simulation results of saturation ratio (SR = Q/Ksp) suggest that chernikovite is the least thermodynamically favored mineral to precipitate (0 &lt; SR &lt; 1) compared to uranyl hydrogen phosphate and Na‐autunite (13 &lt; SR &lt; 40), and uranyl orthophosphate and Ca‐autunite (when Ca2+ is present; SR &gt; 105). Fluorescent tracer studies and laser confocal microscopy images showed that densely aggregated precipitates blocked pores and reduced permeability. The results suggest that uranium precipitation with phosphate as chernikovite is rapid on the time scale of remediation for the conditions considered and can block pores, alter fluid flow paths, and potentially limit mixing and precipitation.</description><subject>Crystals</subject><subject>Environmental Molecular Sciences Laboratory</subject><subject>Fluid flow</subject><subject>mixing</subject><subject>Morphology</subject><subject>pore scale</subject><subject>Pores</subject><subject>precipitation</subject><subject>Spectrum analysis</subject><subject>Uranium</subject><subject>X-ray diffraction</subject><subject>X-ray spectroscopy</subject><issn>0043-1397</issn><issn>1944-7973</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp90c1u1DAUBWCrAqlDYcMTWO0GIaXY8V-yRAOUojKgijJSN5bjXHfcZuJgJ0zn7XFJYcGClTffsa_vQeglJaeUkPLNLtp4WhJSVQdoQWvOC1Ur9gQtCOGsoKxWh-hZSreEUC6kWqCrryFCkazpAMNP001m9KHHweEpmn7f4WET0rAxI-AhgvWDH2fhe2zwNrTQ4ZsYpr7dZRNx2qcRts_RU2e6BC8ezyN09eH9t-XH4uLL2fny7UVhRMmrgrkK6lpKLpxTlACtjbCtaZixTUWpbErRGOWE4IQ1tnTOiqZVprSiEq1UhB2h4_nekEavk_Uj2I0NfQ921JQoKVWV0asZDTH8mCCNeuuTha4zPYQpaSqkrHipiMz05B96G6bY5y9oKnlJ8lCszur1rGwMKUVweoh-a-I-P6kfatAPNejfNWRMZ7zzHez_I_X6cnn5J1PMGZ-Xef83Y-KdloopoderM00_ff-8ul6902v2C4t9miY</recordid><startdate>201302</startdate><enddate>201302</enddate><creator>Fanizza, Michael F.</creator><creator>Yoon, Hongkyu</creator><creator>Zhang, Changyong</creator><creator>Oostrom, Martinus</creator><creator>Wietsma, Thomas W.</creator><creator>Hess, Nancy J.</creator><creator>Bowden, Mark E.</creator><creator>Strathmann, Timothy J.</creator><creator>Finneran, Kevin T.</creator><creator>Werth, Charles J.</creator><general>Blackwell Publishing Ltd</general><general>John Wiley &amp; Sons, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7QL</scope><scope>7T7</scope><scope>7TG</scope><scope>7U9</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H94</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>7TV</scope><scope>H97</scope><scope>OTOTI</scope></search><sort><creationdate>201302</creationdate><title>Pore-scale evaluation of uranyl phosphate precipitation in a model groundwater system</title><author>Fanizza, Michael F. ; Yoon, Hongkyu ; Zhang, Changyong ; Oostrom, Martinus ; Wietsma, Thomas W. ; Hess, Nancy J. ; Bowden, Mark E. ; Strathmann, Timothy J. ; Finneran, Kevin T. ; Werth, Charles J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a5248-3f8e996645ff710e19a5cdab3acb8116b25ba7f55403bc2ffc5bd7a2c585d6703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Crystals</topic><topic>Environmental Molecular Sciences Laboratory</topic><topic>Fluid flow</topic><topic>mixing</topic><topic>Morphology</topic><topic>pore scale</topic><topic>Pores</topic><topic>precipitation</topic><topic>Spectrum analysis</topic><topic>Uranium</topic><topic>X-ray diffraction</topic><topic>X-ray spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fanizza, Michael F.</creatorcontrib><creatorcontrib>Yoon, Hongkyu</creatorcontrib><creatorcontrib>Zhang, Changyong</creatorcontrib><creatorcontrib>Oostrom, Martinus</creatorcontrib><creatorcontrib>Wietsma, Thomas W.</creatorcontrib><creatorcontrib>Hess, Nancy J.</creatorcontrib><creatorcontrib>Bowden, Mark E.</creatorcontrib><creatorcontrib>Strathmann, Timothy J.</creatorcontrib><creatorcontrib>Finneran, Kevin T.</creatorcontrib><creatorcontrib>Werth, Charles J.</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Pollution Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>OSTI.GOV</collection><jtitle>Water Resources Research, 49(2):874-890</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fanizza, Michael F.</au><au>Yoon, Hongkyu</au><au>Zhang, Changyong</au><au>Oostrom, Martinus</au><au>Wietsma, Thomas W.</au><au>Hess, Nancy J.</au><au>Bowden, Mark E.</au><au>Strathmann, Timothy J.</au><au>Finneran, Kevin T.</au><au>Werth, Charles J.</au><aucorp>Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pore-scale evaluation of uranyl phosphate precipitation in a model groundwater system</atitle><jtitle>Water Resources Research, 49(2):874-890</jtitle><addtitle>Water Resour. Res</addtitle><date>2013-02</date><risdate>2013</risdate><volume>49</volume><issue>2</issue><spage>874</spage><epage>890</epage><pages>874-890</pages><issn>0043-1397</issn><eissn>1944-7973</eissn><abstract>Key Points In situ uranyl phosphate precipitation is fast on the time scale of remediation Ca2+ &amp; SO42‐ affect uranyl phosphate precipitation rate and morphology Only chernikovite is formed, and it blocks pore spaces and reduces mixing The abiotic precipitation of uranium (U(VI)) was evaluated in a microfluidic pore network (i.e., micromodel) to assess the efficacy of using a phosphate amendment to immobilize uranium in groundwater. U(VI) was mixed transverse to the direction of flow with hydrogen phosphate (HPO42−), in the presence or absence of calcium (Ca2+) or sulfate (SO42−), in order to identify precipitation rates, morphology and types of minerals formed, and effects of mineral precipitates on pore blockage. Precipitation occurred over the time scale of hours to days. Relative to when only U(VI) and HPO42− were present, precipitation rates were 2.3 times slower when SO42− was present, and 1.4 times faster when Ca2+ was present; larger crystals formed in the presence of SO42−. Raman backscattering spectroscopy and micro‐X‐ray diffraction results both showed that the only mineral precipitated was chernikovite, UO2HPO4 · 4H2O; energy dispersive X‐ray spectroscopy results indicate that Ca and S are not incorporated into the chernikovite lattice. A pore‐scale model was developed, and simulation results of saturation ratio (SR = Q/Ksp) suggest that chernikovite is the least thermodynamically favored mineral to precipitate (0 &lt; SR &lt; 1) compared to uranyl hydrogen phosphate and Na‐autunite (13 &lt; SR &lt; 40), and uranyl orthophosphate and Ca‐autunite (when Ca2+ is present; SR &gt; 105). Fluorescent tracer studies and laser confocal microscopy images showed that densely aggregated precipitates blocked pores and reduced permeability. The results suggest that uranium precipitation with phosphate as chernikovite is rapid on the time scale of remediation for the conditions considered and can block pores, alter fluid flow paths, and potentially limit mixing and precipitation.</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/wrcr.20088</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0043-1397
ispartof Water Resources Research, 49(2):874-890, 2013-02, Vol.49 (2), p.874-890
issn 0043-1397
1944-7973
language eng
recordid cdi_proquest_miscellaneous_1566842706
source Access via Wiley Online Library; Wiley-Blackwell AGU Digital Library; EZB-FREE-00999 freely available EZB journals
subjects Crystals
Environmental Molecular Sciences Laboratory
Fluid flow
mixing
Morphology
pore scale
Pores
precipitation
Spectrum analysis
Uranium
X-ray diffraction
X-ray spectroscopy
title Pore-scale evaluation of uranyl phosphate precipitation in a model groundwater system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T03%3A08%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pore-scale%20evaluation%20of%20uranyl%20phosphate%20precipitation%20in%20a%20model%20groundwater%20system&rft.jtitle=Water%20Resources%20Research,%2049(2):874-890&rft.au=Fanizza,%20Michael%20F.&rft.aucorp=Pacific%20Northwest%20National%20Laboratory%20(PNNL),%20Richland,%20WA%20(US),%20Environmental%20Molecular%20Sciences%20Laboratory%20(EMSL)&rft.date=2013-02&rft.volume=49&rft.issue=2&rft.spage=874&rft.epage=890&rft.pages=874-890&rft.issn=0043-1397&rft.eissn=1944-7973&rft_id=info:doi/10.1002/wrcr.20088&rft_dat=%3Cproquest_osti_%3E1566842706%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1642081139&rft_id=info:pmid/&rfr_iscdi=true