Next generation modeling in GWAS: comparing different genetic architectures

The continuous advancement in genotyping technology has not been accompanied by the application of innovative statistical methods, such as multi-marker methods (MMM), to unravel genetic associations with complex traits. Although the performance of MMM has been widely explored in a prediction context...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Human genetics 2014-10, Vol.133 (10), p.1235-1253
Hauptverfasser: López de Maturana, Evangelina, Ibáñez-Escriche, Noelia, González-Recio, Óscar, Marenne, Gaëlle, Mehrban, Hossein, Chanock, Stephen J., Goddard, Michael E., Malats, Núria
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1253
container_issue 10
container_start_page 1235
container_title Human genetics
container_volume 133
creator López de Maturana, Evangelina
Ibáñez-Escriche, Noelia
González-Recio, Óscar
Marenne, Gaëlle
Mehrban, Hossein
Chanock, Stephen J.
Goddard, Michael E.
Malats, Núria
description The continuous advancement in genotyping technology has not been accompanied by the application of innovative statistical methods, such as multi-marker methods (MMM), to unravel genetic associations with complex traits. Although the performance of MMM has been widely explored in a prediction context, little is known on their behavior in the quantitative trait loci (QTL) detection under complex genetic architectures. We shed light on this still open question by applying Bayes A (BA) and Bayesian LASSO (BL) to simulated and real data. Both methods were compared to the single marker regression (SMR). Simulated data were generated in the context of six scenarios differing on effect size, minor allele frequency (MAF) and linkage disequilibrium (LD) between QTLs. These were based on real SNP genotypes in chromosome 21 from the Spanish Bladder Cancer Study. We show how the genetic architecture dramatically affects the behavior of the methods in terms of power, type I error and accuracy of estimates. Markers with high MAF are easier to detect by all methods, especially if they have a large effect on the phenotypic trait. A high LD between QTLs with either large or small effects differently affects the power of the methods: it impairs QTL detection with BA, irrespectively of the effect size, although boosts that of small effects with BL and SMR. We demonstrate the convenience of applying MMM rather than SMR because of their larger power and smaller type I error. Results from real data when applying MMM suggest novel associations not detected by SMR.
doi_str_mv 10.1007/s00439-014-1461-1
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1566829129</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A385069787</galeid><sourcerecordid>A385069787</sourcerecordid><originalsourceid>FETCH-LOGICAL-c576t-d00bff79cd5df46405d04d46c0084fddc42d5d3ce56e200a7168539e20fda2ea3</originalsourceid><addsrcrecordid>eNqNkl1rFTEQhoMo9lj9Ad7Igjd6sXVm87G73h2K1mJRsIqXIU0mx5T9OE12Qf-9WbZKjyhILhImz_vCzLyMPUU4QYD6VQIQvC0BRYlCYYn32AYFr0qsgN9nG-ACSlVjfcQepXQNgLKt5EN2VImWi4bjhr3_QN-nYkcDRTOFcSj60VEXhl0RhuLs6_bydWHHfm_iUnLBe4o0rIIp2MJE-y1MZKc5UnrMHnjTJXpyex-zL2_ffD59V158PDs_3V6UVtZqKh3Alfd1a510XigB0oFwQlmARnjnrKjyD7ckFVUApkbVSN7mt3emIsOP2YvVdx_Hm5nSpPuQLHWdGWick0apVFO1WLX_gyJwxVFl9Pkf6PU4xyE3slB50FjLO9TOdKTD4McpGruY6i1vJKi2bupMnfyFysdRH-w4kA-5fiB4eSDIzJQXszNzSvr88tMhiytr45hSJK_3MfQm_tAIesmFXnOhcy70kguNWfPstrn5qif3W_ErCBmoViDtl1VTvNP9P11_AvAUvuU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1560431756</pqid></control><display><type>article</type><title>Next generation modeling in GWAS: comparing different genetic architectures</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>López de Maturana, Evangelina ; Ibáñez-Escriche, Noelia ; González-Recio, Óscar ; Marenne, Gaëlle ; Mehrban, Hossein ; Chanock, Stephen J. ; Goddard, Michael E. ; Malats, Núria</creator><creatorcontrib>López de Maturana, Evangelina ; Ibáñez-Escriche, Noelia ; González-Recio, Óscar ; Marenne, Gaëlle ; Mehrban, Hossein ; Chanock, Stephen J. ; Goddard, Michael E. ; Malats, Núria</creatorcontrib><description>The continuous advancement in genotyping technology has not been accompanied by the application of innovative statistical methods, such as multi-marker methods (MMM), to unravel genetic associations with complex traits. Although the performance of MMM has been widely explored in a prediction context, little is known on their behavior in the quantitative trait loci (QTL) detection under complex genetic architectures. We shed light on this still open question by applying Bayes A (BA) and Bayesian LASSO (BL) to simulated and real data. Both methods were compared to the single marker regression (SMR). Simulated data were generated in the context of six scenarios differing on effect size, minor allele frequency (MAF) and linkage disequilibrium (LD) between QTLs. These were based on real SNP genotypes in chromosome 21 from the Spanish Bladder Cancer Study. We show how the genetic architecture dramatically affects the behavior of the methods in terms of power, type I error and accuracy of estimates. Markers with high MAF are easier to detect by all methods, especially if they have a large effect on the phenotypic trait. A high LD between QTLs with either large or small effects differently affects the power of the methods: it impairs QTL detection with BA, irrespectively of the effect size, although boosts that of small effects with BL and SMR. We demonstrate the convenience of applying MMM rather than SMR because of their larger power and smaller type I error. Results from real data when applying MMM suggest novel associations not detected by SMR.</description><identifier>ISSN: 0340-6717</identifier><identifier>EISSN: 1432-1203</identifier><identifier>DOI: 10.1007/s00439-014-1461-1</identifier><identifier>PMID: 24934831</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Accuracy ; Alleles ; Bayes Theorem ; Biomedical and Life Sciences ; Biomedicine ; Cancer ; Case-Control Studies ; Computer Simulation ; Decision making ; Epidemiology ; Gene Frequency ; Gene Function ; Genes, Neoplasm ; Genome-Wide Association Study - statistics &amp; numerical data ; Genomes ; Genotype &amp; phenotype ; Genotyping Techniques - methods ; Genotyping Techniques - statistics &amp; numerical data ; Hispanic Americans - genetics ; Hispanic Americans - statistics &amp; numerical data ; Human Genetics ; Humans ; Linkage Disequilibrium ; Medical research ; Metabolic Diseases ; Molecular Medicine ; Original Investigation ; Polymorphism, Single Nucleotide ; Population genetics ; Quantitative genetics ; Quantitative Trait Loci ; Urinary Bladder Neoplasms - epidemiology ; Urinary Bladder Neoplasms - genetics</subject><ispartof>Human genetics, 2014-10, Vol.133 (10), p.1235-1253</ispartof><rights>Springer-Verlag Berlin Heidelberg 2014</rights><rights>COPYRIGHT 2014 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c576t-d00bff79cd5df46405d04d46c0084fddc42d5d3ce56e200a7168539e20fda2ea3</citedby><cites>FETCH-LOGICAL-c576t-d00bff79cd5df46405d04d46c0084fddc42d5d3ce56e200a7168539e20fda2ea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00439-014-1461-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00439-014-1461-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24934831$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>López de Maturana, Evangelina</creatorcontrib><creatorcontrib>Ibáñez-Escriche, Noelia</creatorcontrib><creatorcontrib>González-Recio, Óscar</creatorcontrib><creatorcontrib>Marenne, Gaëlle</creatorcontrib><creatorcontrib>Mehrban, Hossein</creatorcontrib><creatorcontrib>Chanock, Stephen J.</creatorcontrib><creatorcontrib>Goddard, Michael E.</creatorcontrib><creatorcontrib>Malats, Núria</creatorcontrib><title>Next generation modeling in GWAS: comparing different genetic architectures</title><title>Human genetics</title><addtitle>Hum Genet</addtitle><addtitle>Hum Genet</addtitle><description>The continuous advancement in genotyping technology has not been accompanied by the application of innovative statistical methods, such as multi-marker methods (MMM), to unravel genetic associations with complex traits. Although the performance of MMM has been widely explored in a prediction context, little is known on their behavior in the quantitative trait loci (QTL) detection under complex genetic architectures. We shed light on this still open question by applying Bayes A (BA) and Bayesian LASSO (BL) to simulated and real data. Both methods were compared to the single marker regression (SMR). Simulated data were generated in the context of six scenarios differing on effect size, minor allele frequency (MAF) and linkage disequilibrium (LD) between QTLs. These were based on real SNP genotypes in chromosome 21 from the Spanish Bladder Cancer Study. We show how the genetic architecture dramatically affects the behavior of the methods in terms of power, type I error and accuracy of estimates. Markers with high MAF are easier to detect by all methods, especially if they have a large effect on the phenotypic trait. A high LD between QTLs with either large or small effects differently affects the power of the methods: it impairs QTL detection with BA, irrespectively of the effect size, although boosts that of small effects with BL and SMR. We demonstrate the convenience of applying MMM rather than SMR because of their larger power and smaller type I error. Results from real data when applying MMM suggest novel associations not detected by SMR.</description><subject>Accuracy</subject><subject>Alleles</subject><subject>Bayes Theorem</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cancer</subject><subject>Case-Control Studies</subject><subject>Computer Simulation</subject><subject>Decision making</subject><subject>Epidemiology</subject><subject>Gene Frequency</subject><subject>Gene Function</subject><subject>Genes, Neoplasm</subject><subject>Genome-Wide Association Study - statistics &amp; numerical data</subject><subject>Genomes</subject><subject>Genotype &amp; phenotype</subject><subject>Genotyping Techniques - methods</subject><subject>Genotyping Techniques - statistics &amp; numerical data</subject><subject>Hispanic Americans - genetics</subject><subject>Hispanic Americans - statistics &amp; numerical data</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>Linkage Disequilibrium</subject><subject>Medical research</subject><subject>Metabolic Diseases</subject><subject>Molecular Medicine</subject><subject>Original Investigation</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Population genetics</subject><subject>Quantitative genetics</subject><subject>Quantitative Trait Loci</subject><subject>Urinary Bladder Neoplasms - epidemiology</subject><subject>Urinary Bladder Neoplasms - genetics</subject><issn>0340-6717</issn><issn>1432-1203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkl1rFTEQhoMo9lj9Ad7Igjd6sXVm87G73h2K1mJRsIqXIU0mx5T9OE12Qf-9WbZKjyhILhImz_vCzLyMPUU4QYD6VQIQvC0BRYlCYYn32AYFr0qsgN9nG-ACSlVjfcQepXQNgLKt5EN2VImWi4bjhr3_QN-nYkcDRTOFcSj60VEXhl0RhuLs6_bydWHHfm_iUnLBe4o0rIIp2MJE-y1MZKc5UnrMHnjTJXpyex-zL2_ffD59V158PDs_3V6UVtZqKh3Alfd1a510XigB0oFwQlmARnjnrKjyD7ckFVUApkbVSN7mt3emIsOP2YvVdx_Hm5nSpPuQLHWdGWick0apVFO1WLX_gyJwxVFl9Pkf6PU4xyE3slB50FjLO9TOdKTD4McpGruY6i1vJKi2bupMnfyFysdRH-w4kA-5fiB4eSDIzJQXszNzSvr88tMhiytr45hSJK_3MfQm_tAIesmFXnOhcy70kguNWfPstrn5qif3W_ErCBmoViDtl1VTvNP9P11_AvAUvuU</recordid><startdate>20141001</startdate><enddate>20141001</enddate><creator>López de Maturana, Evangelina</creator><creator>Ibáñez-Escriche, Noelia</creator><creator>González-Recio, Óscar</creator><creator>Marenne, Gaëlle</creator><creator>Mehrban, Hossein</creator><creator>Chanock, Stephen J.</creator><creator>Goddard, Michael E.</creator><creator>Malats, Núria</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20141001</creationdate><title>Next generation modeling in GWAS: comparing different genetic architectures</title><author>López de Maturana, Evangelina ; Ibáñez-Escriche, Noelia ; González-Recio, Óscar ; Marenne, Gaëlle ; Mehrban, Hossein ; Chanock, Stephen J. ; Goddard, Michael E. ; Malats, Núria</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c576t-d00bff79cd5df46405d04d46c0084fddc42d5d3ce56e200a7168539e20fda2ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Accuracy</topic><topic>Alleles</topic><topic>Bayes Theorem</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cancer</topic><topic>Case-Control Studies</topic><topic>Computer Simulation</topic><topic>Decision making</topic><topic>Epidemiology</topic><topic>Gene Frequency</topic><topic>Gene Function</topic><topic>Genes, Neoplasm</topic><topic>Genome-Wide Association Study - statistics &amp; numerical data</topic><topic>Genomes</topic><topic>Genotype &amp; phenotype</topic><topic>Genotyping Techniques - methods</topic><topic>Genotyping Techniques - statistics &amp; numerical data</topic><topic>Hispanic Americans - genetics</topic><topic>Hispanic Americans - statistics &amp; numerical data</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>Linkage Disequilibrium</topic><topic>Medical research</topic><topic>Metabolic Diseases</topic><topic>Molecular Medicine</topic><topic>Original Investigation</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Population genetics</topic><topic>Quantitative genetics</topic><topic>Quantitative Trait Loci</topic><topic>Urinary Bladder Neoplasms - epidemiology</topic><topic>Urinary Bladder Neoplasms - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>López de Maturana, Evangelina</creatorcontrib><creatorcontrib>Ibáñez-Escriche, Noelia</creatorcontrib><creatorcontrib>González-Recio, Óscar</creatorcontrib><creatorcontrib>Marenne, Gaëlle</creatorcontrib><creatorcontrib>Mehrban, Hossein</creatorcontrib><creatorcontrib>Chanock, Stephen J.</creatorcontrib><creatorcontrib>Goddard, Michael E.</creatorcontrib><creatorcontrib>Malats, Núria</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Human genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>López de Maturana, Evangelina</au><au>Ibáñez-Escriche, Noelia</au><au>González-Recio, Óscar</au><au>Marenne, Gaëlle</au><au>Mehrban, Hossein</au><au>Chanock, Stephen J.</au><au>Goddard, Michael E.</au><au>Malats, Núria</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Next generation modeling in GWAS: comparing different genetic architectures</atitle><jtitle>Human genetics</jtitle><stitle>Hum Genet</stitle><addtitle>Hum Genet</addtitle><date>2014-10-01</date><risdate>2014</risdate><volume>133</volume><issue>10</issue><spage>1235</spage><epage>1253</epage><pages>1235-1253</pages><issn>0340-6717</issn><eissn>1432-1203</eissn><abstract>The continuous advancement in genotyping technology has not been accompanied by the application of innovative statistical methods, such as multi-marker methods (MMM), to unravel genetic associations with complex traits. Although the performance of MMM has been widely explored in a prediction context, little is known on their behavior in the quantitative trait loci (QTL) detection under complex genetic architectures. We shed light on this still open question by applying Bayes A (BA) and Bayesian LASSO (BL) to simulated and real data. Both methods were compared to the single marker regression (SMR). Simulated data were generated in the context of six scenarios differing on effect size, minor allele frequency (MAF) and linkage disequilibrium (LD) between QTLs. These were based on real SNP genotypes in chromosome 21 from the Spanish Bladder Cancer Study. We show how the genetic architecture dramatically affects the behavior of the methods in terms of power, type I error and accuracy of estimates. Markers with high MAF are easier to detect by all methods, especially if they have a large effect on the phenotypic trait. A high LD between QTLs with either large or small effects differently affects the power of the methods: it impairs QTL detection with BA, irrespectively of the effect size, although boosts that of small effects with BL and SMR. We demonstrate the convenience of applying MMM rather than SMR because of their larger power and smaller type I error. Results from real data when applying MMM suggest novel associations not detected by SMR.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>24934831</pmid><doi>10.1007/s00439-014-1461-1</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0340-6717
ispartof Human genetics, 2014-10, Vol.133 (10), p.1235-1253
issn 0340-6717
1432-1203
language eng
recordid cdi_proquest_miscellaneous_1566829129
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Accuracy
Alleles
Bayes Theorem
Biomedical and Life Sciences
Biomedicine
Cancer
Case-Control Studies
Computer Simulation
Decision making
Epidemiology
Gene Frequency
Gene Function
Genes, Neoplasm
Genome-Wide Association Study - statistics & numerical data
Genomes
Genotype & phenotype
Genotyping Techniques - methods
Genotyping Techniques - statistics & numerical data
Hispanic Americans - genetics
Hispanic Americans - statistics & numerical data
Human Genetics
Humans
Linkage Disequilibrium
Medical research
Metabolic Diseases
Molecular Medicine
Original Investigation
Polymorphism, Single Nucleotide
Population genetics
Quantitative genetics
Quantitative Trait Loci
Urinary Bladder Neoplasms - epidemiology
Urinary Bladder Neoplasms - genetics
title Next generation modeling in GWAS: comparing different genetic architectures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T06%3A28%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Next%20generation%20modeling%20in%20GWAS:%20comparing%20different%20genetic%20architectures&rft.jtitle=Human%20genetics&rft.au=L%C3%B3pez%20de%20Maturana,%20Evangelina&rft.date=2014-10-01&rft.volume=133&rft.issue=10&rft.spage=1235&rft.epage=1253&rft.pages=1235-1253&rft.issn=0340-6717&rft.eissn=1432-1203&rft_id=info:doi/10.1007/s00439-014-1461-1&rft_dat=%3Cgale_proqu%3EA385069787%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1560431756&rft_id=info:pmid/24934831&rft_galeid=A385069787&rfr_iscdi=true