Next generation modeling in GWAS: comparing different genetic architectures
The continuous advancement in genotyping technology has not been accompanied by the application of innovative statistical methods, such as multi-marker methods (MMM), to unravel genetic associations with complex traits. Although the performance of MMM has been widely explored in a prediction context...
Gespeichert in:
Veröffentlicht in: | Human genetics 2014-10, Vol.133 (10), p.1235-1253 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1253 |
---|---|
container_issue | 10 |
container_start_page | 1235 |
container_title | Human genetics |
container_volume | 133 |
creator | López de Maturana, Evangelina Ibáñez-Escriche, Noelia González-Recio, Óscar Marenne, Gaëlle Mehrban, Hossein Chanock, Stephen J. Goddard, Michael E. Malats, Núria |
description | The continuous advancement in genotyping technology has not been accompanied by the application of innovative statistical methods, such as multi-marker methods (MMM), to unravel genetic associations with complex traits. Although the performance of MMM has been widely explored in a prediction context, little is known on their behavior in the quantitative trait loci (QTL) detection under complex genetic architectures. We shed light on this still open question by applying Bayes A (BA) and Bayesian LASSO (BL) to simulated and real data. Both methods were compared to the single marker regression (SMR). Simulated data were generated in the context of six scenarios differing on effect size, minor allele frequency (MAF) and linkage disequilibrium (LD) between QTLs. These were based on real SNP genotypes in chromosome 21 from the Spanish Bladder Cancer Study. We show how the genetic architecture dramatically affects the behavior of the methods in terms of power, type I error and accuracy of estimates. Markers with high MAF are easier to detect by all methods, especially if they have a large effect on the phenotypic trait. A high LD between QTLs with either large or small effects differently affects the power of the methods: it impairs QTL detection with BA, irrespectively of the effect size, although boosts that of small effects with BL and SMR. We demonstrate the convenience of applying MMM rather than SMR because of their larger power and smaller type I error. Results from real data when applying MMM suggest novel associations not detected by SMR. |
doi_str_mv | 10.1007/s00439-014-1461-1 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1566829129</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A385069787</galeid><sourcerecordid>A385069787</sourcerecordid><originalsourceid>FETCH-LOGICAL-c576t-d00bff79cd5df46405d04d46c0084fddc42d5d3ce56e200a7168539e20fda2ea3</originalsourceid><addsrcrecordid>eNqNkl1rFTEQhoMo9lj9Ad7Igjd6sXVm87G73h2K1mJRsIqXIU0mx5T9OE12Qf-9WbZKjyhILhImz_vCzLyMPUU4QYD6VQIQvC0BRYlCYYn32AYFr0qsgN9nG-ACSlVjfcQepXQNgLKt5EN2VImWi4bjhr3_QN-nYkcDRTOFcSj60VEXhl0RhuLs6_bydWHHfm_iUnLBe4o0rIIp2MJE-y1MZKc5UnrMHnjTJXpyex-zL2_ffD59V158PDs_3V6UVtZqKh3Alfd1a510XigB0oFwQlmARnjnrKjyD7ckFVUApkbVSN7mt3emIsOP2YvVdx_Hm5nSpPuQLHWdGWick0apVFO1WLX_gyJwxVFl9Pkf6PU4xyE3slB50FjLO9TOdKTD4McpGruY6i1vJKi2bupMnfyFysdRH-w4kA-5fiB4eSDIzJQXszNzSvr88tMhiytr45hSJK_3MfQm_tAIesmFXnOhcy70kguNWfPstrn5qif3W_ErCBmoViDtl1VTvNP9P11_AvAUvuU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1560431756</pqid></control><display><type>article</type><title>Next generation modeling in GWAS: comparing different genetic architectures</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>López de Maturana, Evangelina ; Ibáñez-Escriche, Noelia ; González-Recio, Óscar ; Marenne, Gaëlle ; Mehrban, Hossein ; Chanock, Stephen J. ; Goddard, Michael E. ; Malats, Núria</creator><creatorcontrib>López de Maturana, Evangelina ; Ibáñez-Escriche, Noelia ; González-Recio, Óscar ; Marenne, Gaëlle ; Mehrban, Hossein ; Chanock, Stephen J. ; Goddard, Michael E. ; Malats, Núria</creatorcontrib><description>The continuous advancement in genotyping technology has not been accompanied by the application of innovative statistical methods, such as multi-marker methods (MMM), to unravel genetic associations with complex traits. Although the performance of MMM has been widely explored in a prediction context, little is known on their behavior in the quantitative trait loci (QTL) detection under complex genetic architectures. We shed light on this still open question by applying Bayes A (BA) and Bayesian LASSO (BL) to simulated and real data. Both methods were compared to the single marker regression (SMR). Simulated data were generated in the context of six scenarios differing on effect size, minor allele frequency (MAF) and linkage disequilibrium (LD) between QTLs. These were based on real SNP genotypes in chromosome 21 from the Spanish Bladder Cancer Study. We show how the genetic architecture dramatically affects the behavior of the methods in terms of power, type I error and accuracy of estimates. Markers with high MAF are easier to detect by all methods, especially if they have a large effect on the phenotypic trait. A high LD between QTLs with either large or small effects differently affects the power of the methods: it impairs QTL detection with BA, irrespectively of the effect size, although boosts that of small effects with BL and SMR. We demonstrate the convenience of applying MMM rather than SMR because of their larger power and smaller type I error. Results from real data when applying MMM suggest novel associations not detected by SMR.</description><identifier>ISSN: 0340-6717</identifier><identifier>EISSN: 1432-1203</identifier><identifier>DOI: 10.1007/s00439-014-1461-1</identifier><identifier>PMID: 24934831</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Accuracy ; Alleles ; Bayes Theorem ; Biomedical and Life Sciences ; Biomedicine ; Cancer ; Case-Control Studies ; Computer Simulation ; Decision making ; Epidemiology ; Gene Frequency ; Gene Function ; Genes, Neoplasm ; Genome-Wide Association Study - statistics & numerical data ; Genomes ; Genotype & phenotype ; Genotyping Techniques - methods ; Genotyping Techniques - statistics & numerical data ; Hispanic Americans - genetics ; Hispanic Americans - statistics & numerical data ; Human Genetics ; Humans ; Linkage Disequilibrium ; Medical research ; Metabolic Diseases ; Molecular Medicine ; Original Investigation ; Polymorphism, Single Nucleotide ; Population genetics ; Quantitative genetics ; Quantitative Trait Loci ; Urinary Bladder Neoplasms - epidemiology ; Urinary Bladder Neoplasms - genetics</subject><ispartof>Human genetics, 2014-10, Vol.133 (10), p.1235-1253</ispartof><rights>Springer-Verlag Berlin Heidelberg 2014</rights><rights>COPYRIGHT 2014 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c576t-d00bff79cd5df46405d04d46c0084fddc42d5d3ce56e200a7168539e20fda2ea3</citedby><cites>FETCH-LOGICAL-c576t-d00bff79cd5df46405d04d46c0084fddc42d5d3ce56e200a7168539e20fda2ea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00439-014-1461-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00439-014-1461-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24934831$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>López de Maturana, Evangelina</creatorcontrib><creatorcontrib>Ibáñez-Escriche, Noelia</creatorcontrib><creatorcontrib>González-Recio, Óscar</creatorcontrib><creatorcontrib>Marenne, Gaëlle</creatorcontrib><creatorcontrib>Mehrban, Hossein</creatorcontrib><creatorcontrib>Chanock, Stephen J.</creatorcontrib><creatorcontrib>Goddard, Michael E.</creatorcontrib><creatorcontrib>Malats, Núria</creatorcontrib><title>Next generation modeling in GWAS: comparing different genetic architectures</title><title>Human genetics</title><addtitle>Hum Genet</addtitle><addtitle>Hum Genet</addtitle><description>The continuous advancement in genotyping technology has not been accompanied by the application of innovative statistical methods, such as multi-marker methods (MMM), to unravel genetic associations with complex traits. Although the performance of MMM has been widely explored in a prediction context, little is known on their behavior in the quantitative trait loci (QTL) detection under complex genetic architectures. We shed light on this still open question by applying Bayes A (BA) and Bayesian LASSO (BL) to simulated and real data. Both methods were compared to the single marker regression (SMR). Simulated data were generated in the context of six scenarios differing on effect size, minor allele frequency (MAF) and linkage disequilibrium (LD) between QTLs. These were based on real SNP genotypes in chromosome 21 from the Spanish Bladder Cancer Study. We show how the genetic architecture dramatically affects the behavior of the methods in terms of power, type I error and accuracy of estimates. Markers with high MAF are easier to detect by all methods, especially if they have a large effect on the phenotypic trait. A high LD between QTLs with either large or small effects differently affects the power of the methods: it impairs QTL detection with BA, irrespectively of the effect size, although boosts that of small effects with BL and SMR. We demonstrate the convenience of applying MMM rather than SMR because of their larger power and smaller type I error. Results from real data when applying MMM suggest novel associations not detected by SMR.</description><subject>Accuracy</subject><subject>Alleles</subject><subject>Bayes Theorem</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cancer</subject><subject>Case-Control Studies</subject><subject>Computer Simulation</subject><subject>Decision making</subject><subject>Epidemiology</subject><subject>Gene Frequency</subject><subject>Gene Function</subject><subject>Genes, Neoplasm</subject><subject>Genome-Wide Association Study - statistics & numerical data</subject><subject>Genomes</subject><subject>Genotype & phenotype</subject><subject>Genotyping Techniques - methods</subject><subject>Genotyping Techniques - statistics & numerical data</subject><subject>Hispanic Americans - genetics</subject><subject>Hispanic Americans - statistics & numerical data</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>Linkage Disequilibrium</subject><subject>Medical research</subject><subject>Metabolic Diseases</subject><subject>Molecular Medicine</subject><subject>Original Investigation</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Population genetics</subject><subject>Quantitative genetics</subject><subject>Quantitative Trait Loci</subject><subject>Urinary Bladder Neoplasms - epidemiology</subject><subject>Urinary Bladder Neoplasms - genetics</subject><issn>0340-6717</issn><issn>1432-1203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkl1rFTEQhoMo9lj9Ad7Igjd6sXVm87G73h2K1mJRsIqXIU0mx5T9OE12Qf-9WbZKjyhILhImz_vCzLyMPUU4QYD6VQIQvC0BRYlCYYn32AYFr0qsgN9nG-ACSlVjfcQepXQNgLKt5EN2VImWi4bjhr3_QN-nYkcDRTOFcSj60VEXhl0RhuLs6_bydWHHfm_iUnLBe4o0rIIp2MJE-y1MZKc5UnrMHnjTJXpyex-zL2_ffD59V158PDs_3V6UVtZqKh3Alfd1a510XigB0oFwQlmARnjnrKjyD7ckFVUApkbVSN7mt3emIsOP2YvVdx_Hm5nSpPuQLHWdGWick0apVFO1WLX_gyJwxVFl9Pkf6PU4xyE3slB50FjLO9TOdKTD4McpGruY6i1vJKi2bupMnfyFysdRH-w4kA-5fiB4eSDIzJQXszNzSvr88tMhiytr45hSJK_3MfQm_tAIesmFXnOhcy70kguNWfPstrn5qif3W_ErCBmoViDtl1VTvNP9P11_AvAUvuU</recordid><startdate>20141001</startdate><enddate>20141001</enddate><creator>López de Maturana, Evangelina</creator><creator>Ibáñez-Escriche, Noelia</creator><creator>González-Recio, Óscar</creator><creator>Marenne, Gaëlle</creator><creator>Mehrban, Hossein</creator><creator>Chanock, Stephen J.</creator><creator>Goddard, Michael E.</creator><creator>Malats, Núria</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20141001</creationdate><title>Next generation modeling in GWAS: comparing different genetic architectures</title><author>López de Maturana, Evangelina ; Ibáñez-Escriche, Noelia ; González-Recio, Óscar ; Marenne, Gaëlle ; Mehrban, Hossein ; Chanock, Stephen J. ; Goddard, Michael E. ; Malats, Núria</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c576t-d00bff79cd5df46405d04d46c0084fddc42d5d3ce56e200a7168539e20fda2ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Accuracy</topic><topic>Alleles</topic><topic>Bayes Theorem</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cancer</topic><topic>Case-Control Studies</topic><topic>Computer Simulation</topic><topic>Decision making</topic><topic>Epidemiology</topic><topic>Gene Frequency</topic><topic>Gene Function</topic><topic>Genes, Neoplasm</topic><topic>Genome-Wide Association Study - statistics & numerical data</topic><topic>Genomes</topic><topic>Genotype & phenotype</topic><topic>Genotyping Techniques - methods</topic><topic>Genotyping Techniques - statistics & numerical data</topic><topic>Hispanic Americans - genetics</topic><topic>Hispanic Americans - statistics & numerical data</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>Linkage Disequilibrium</topic><topic>Medical research</topic><topic>Metabolic Diseases</topic><topic>Molecular Medicine</topic><topic>Original Investigation</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Population genetics</topic><topic>Quantitative genetics</topic><topic>Quantitative Trait Loci</topic><topic>Urinary Bladder Neoplasms - epidemiology</topic><topic>Urinary Bladder Neoplasms - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>López de Maturana, Evangelina</creatorcontrib><creatorcontrib>Ibáñez-Escriche, Noelia</creatorcontrib><creatorcontrib>González-Recio, Óscar</creatorcontrib><creatorcontrib>Marenne, Gaëlle</creatorcontrib><creatorcontrib>Mehrban, Hossein</creatorcontrib><creatorcontrib>Chanock, Stephen J.</creatorcontrib><creatorcontrib>Goddard, Michael E.</creatorcontrib><creatorcontrib>Malats, Núria</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Human genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>López de Maturana, Evangelina</au><au>Ibáñez-Escriche, Noelia</au><au>González-Recio, Óscar</au><au>Marenne, Gaëlle</au><au>Mehrban, Hossein</au><au>Chanock, Stephen J.</au><au>Goddard, Michael E.</au><au>Malats, Núria</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Next generation modeling in GWAS: comparing different genetic architectures</atitle><jtitle>Human genetics</jtitle><stitle>Hum Genet</stitle><addtitle>Hum Genet</addtitle><date>2014-10-01</date><risdate>2014</risdate><volume>133</volume><issue>10</issue><spage>1235</spage><epage>1253</epage><pages>1235-1253</pages><issn>0340-6717</issn><eissn>1432-1203</eissn><abstract>The continuous advancement in genotyping technology has not been accompanied by the application of innovative statistical methods, such as multi-marker methods (MMM), to unravel genetic associations with complex traits. Although the performance of MMM has been widely explored in a prediction context, little is known on their behavior in the quantitative trait loci (QTL) detection under complex genetic architectures. We shed light on this still open question by applying Bayes A (BA) and Bayesian LASSO (BL) to simulated and real data. Both methods were compared to the single marker regression (SMR). Simulated data were generated in the context of six scenarios differing on effect size, minor allele frequency (MAF) and linkage disequilibrium (LD) between QTLs. These were based on real SNP genotypes in chromosome 21 from the Spanish Bladder Cancer Study. We show how the genetic architecture dramatically affects the behavior of the methods in terms of power, type I error and accuracy of estimates. Markers with high MAF are easier to detect by all methods, especially if they have a large effect on the phenotypic trait. A high LD between QTLs with either large or small effects differently affects the power of the methods: it impairs QTL detection with BA, irrespectively of the effect size, although boosts that of small effects with BL and SMR. We demonstrate the convenience of applying MMM rather than SMR because of their larger power and smaller type I error. Results from real data when applying MMM suggest novel associations not detected by SMR.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>24934831</pmid><doi>10.1007/s00439-014-1461-1</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0340-6717 |
ispartof | Human genetics, 2014-10, Vol.133 (10), p.1235-1253 |
issn | 0340-6717 1432-1203 |
language | eng |
recordid | cdi_proquest_miscellaneous_1566829129 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Accuracy Alleles Bayes Theorem Biomedical and Life Sciences Biomedicine Cancer Case-Control Studies Computer Simulation Decision making Epidemiology Gene Frequency Gene Function Genes, Neoplasm Genome-Wide Association Study - statistics & numerical data Genomes Genotype & phenotype Genotyping Techniques - methods Genotyping Techniques - statistics & numerical data Hispanic Americans - genetics Hispanic Americans - statistics & numerical data Human Genetics Humans Linkage Disequilibrium Medical research Metabolic Diseases Molecular Medicine Original Investigation Polymorphism, Single Nucleotide Population genetics Quantitative genetics Quantitative Trait Loci Urinary Bladder Neoplasms - epidemiology Urinary Bladder Neoplasms - genetics |
title | Next generation modeling in GWAS: comparing different genetic architectures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T06%3A28%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Next%20generation%20modeling%20in%20GWAS:%20comparing%20different%20genetic%20architectures&rft.jtitle=Human%20genetics&rft.au=L%C3%B3pez%20de%20Maturana,%20Evangelina&rft.date=2014-10-01&rft.volume=133&rft.issue=10&rft.spage=1235&rft.epage=1253&rft.pages=1235-1253&rft.issn=0340-6717&rft.eissn=1432-1203&rft_id=info:doi/10.1007/s00439-014-1461-1&rft_dat=%3Cgale_proqu%3EA385069787%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1560431756&rft_id=info:pmid/24934831&rft_galeid=A385069787&rfr_iscdi=true |