Reversible and dissipative macroscopic contributions to the stress tensor: Active or passive?
. The issue of dynamic contributions to the macroscopic stress tensor has been of high interest in the field of bio-inspired active systems over the last few years. Of particular interest is a direct coupling (“active term”) of the stress tensor with the order parameter, the latter describing orient...
Gespeichert in:
Veröffentlicht in: | The European physical journal. E, Soft matter and biological physics Soft matter and biological physics, 2014-09, Vol.37 (9), p.40-40, Article 83 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 40 |
---|---|
container_issue | 9 |
container_start_page | 40 |
container_title | The European physical journal. E, Soft matter and biological physics |
container_volume | 37 |
creator | Brand, H. R. Pleiner, H. Svenšek, D. |
description | .
The issue of dynamic contributions to the macroscopic stress tensor has been of high interest in the field of bio-inspired active systems over the last few years. Of particular interest is a direct coupling (“active term”) of the stress tensor with the order parameter, the latter describing orientational order induced by active processes. Here we analyze more generally possible reversible and irreversible dynamic contributions to the stress tensor for various passive and active macroscopic systems. This includes systems with tetrahedral/octupolar order, polar and non-polar (chiral) nematic and smectic liquid crystals, as well as active fluids with a dynamic preferred (polar or non-polar) direction. We show that it cannot
a priori
be seen, neither from the symmetry properties of the macroscopic variables involved, nor from the structure of the cross-coupling contributions to the stress tensor, whether the system studied is active or passive. Rather, that depends on whether the variables that give rise to those cross-couplings in the stress tensor are driven or not. We demonstrate that several simplified descriptions of active systems in the literature that neglect the necessary counter term to the active term violate linear irreversible thermodynamics and lead to an unphysical contribution to the entropy production.
Graphical abstract |
doi_str_mv | 10.1140/epje/i2014-14083-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1566409044</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1566409044</sourcerecordid><originalsourceid>FETCH-LOGICAL-c513t-a0086f5b26312a07e296fddc4496a5bab760ac86e75fcf917683a6a6a731e3923</originalsourceid><addsrcrecordid>eNp9kE1r3DAQhkVoSDZp_0AORZdCLk70ZdnupYSQL1gIhBZ6KUKWx6kWr-Vq7IX8-8i72-QWdJAGPfMO8xByxtkF54pdwrCCSy8YV1kqS5mpA7LgohJZWeW_P729FT8mJ4grxhLK5BE5FrnQTIp8Qf48wQYi-roDavuGNh7RD3b0G6Br62JAFwbvqAv9GH09jT70SMdAx79AcYyAqYIeQ_xOr9y2LUQ62JSygR-fyWFrO4Qv-_uU_Lq9-Xl9ny0f7x6ur5aZy7kcM8tYqdu8FlpyYVkBotJt0zilKm3z2taFZtaVGoq8dW3FC11Kq9MpJAdZCXlKzne5Qwz_JsDRrD066DrbQ5jQ8FxrxSqmVELFDp13wwitGaJf2_hiODOzVjNrNVutZqvVzE1f9_lTvYbmreW_xwR82wMWne3aaHvn8Z0ryyqtxhIndxymr_4ZolmFKfbJzUfjXwG2hJL9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1566409044</pqid></control><display><type>article</type><title>Reversible and dissipative macroscopic contributions to the stress tensor: Active or passive?</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Brand, H. R. ; Pleiner, H. ; Svenšek, D.</creator><creatorcontrib>Brand, H. R. ; Pleiner, H. ; Svenšek, D.</creatorcontrib><description>.
The issue of dynamic contributions to the macroscopic stress tensor has been of high interest in the field of bio-inspired active systems over the last few years. Of particular interest is a direct coupling (“active term”) of the stress tensor with the order parameter, the latter describing orientational order induced by active processes. Here we analyze more generally possible reversible and irreversible dynamic contributions to the stress tensor for various passive and active macroscopic systems. This includes systems with tetrahedral/octupolar order, polar and non-polar (chiral) nematic and smectic liquid crystals, as well as active fluids with a dynamic preferred (polar or non-polar) direction. We show that it cannot
a priori
be seen, neither from the symmetry properties of the macroscopic variables involved, nor from the structure of the cross-coupling contributions to the stress tensor, whether the system studied is active or passive. Rather, that depends on whether the variables that give rise to those cross-couplings in the stress tensor are driven or not. We demonstrate that several simplified descriptions of active systems in the literature that neglect the necessary counter term to the active term violate linear irreversible thermodynamics and lead to an unphysical contribution to the entropy production.
Graphical abstract</description><identifier>ISSN: 1292-8941</identifier><identifier>EISSN: 1292-895X</identifier><identifier>DOI: 10.1140/epje/i2014-14083-4</identifier><identifier>PMID: 25260325</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Animals ; Biological and Medical Physics ; Biophysical Phenomena ; Biophysics ; Complex Fluids and Microfluidics ; Complex Systems ; Condensed matter: structure, mechanical and thermal properties ; Entropy ; Exact sciences and technology ; Hydrodynamics ; Liquid Crystals ; Models, Biological ; Models, Theoretical ; Nanotechnology ; Orientational order of liquid crystals; electric and magnetic field effects on order ; Physics ; Physics and Astronomy ; Polymer Sciences ; Regular Article ; Soft and Granular Matter ; Structure of solids and liquids; crystallography ; Surfaces and Interfaces ; Systems Theory ; Thermodynamics ; Thin Films</subject><ispartof>The European physical journal. E, Soft matter and biological physics, 2014-09, Vol.37 (9), p.40-40, Article 83</ispartof><rights>EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c513t-a0086f5b26312a07e296fddc4496a5bab760ac86e75fcf917683a6a6a731e3923</citedby><cites>FETCH-LOGICAL-c513t-a0086f5b26312a07e296fddc4496a5bab760ac86e75fcf917683a6a6a731e3923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epje/i2014-14083-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1140/epje/i2014-14083-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28893120$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25260325$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Brand, H. R.</creatorcontrib><creatorcontrib>Pleiner, H.</creatorcontrib><creatorcontrib>Svenšek, D.</creatorcontrib><title>Reversible and dissipative macroscopic contributions to the stress tensor: Active or passive?</title><title>The European physical journal. E, Soft matter and biological physics</title><addtitle>Eur. Phys. J. E</addtitle><addtitle>Eur Phys J E Soft Matter</addtitle><description>.
The issue of dynamic contributions to the macroscopic stress tensor has been of high interest in the field of bio-inspired active systems over the last few years. Of particular interest is a direct coupling (“active term”) of the stress tensor with the order parameter, the latter describing orientational order induced by active processes. Here we analyze more generally possible reversible and irreversible dynamic contributions to the stress tensor for various passive and active macroscopic systems. This includes systems with tetrahedral/octupolar order, polar and non-polar (chiral) nematic and smectic liquid crystals, as well as active fluids with a dynamic preferred (polar or non-polar) direction. We show that it cannot
a priori
be seen, neither from the symmetry properties of the macroscopic variables involved, nor from the structure of the cross-coupling contributions to the stress tensor, whether the system studied is active or passive. Rather, that depends on whether the variables that give rise to those cross-couplings in the stress tensor are driven or not. We demonstrate that several simplified descriptions of active systems in the literature that neglect the necessary counter term to the active term violate linear irreversible thermodynamics and lead to an unphysical contribution to the entropy production.
Graphical abstract</description><subject>Animals</subject><subject>Biological and Medical Physics</subject><subject>Biophysical Phenomena</subject><subject>Biophysics</subject><subject>Complex Fluids and Microfluidics</subject><subject>Complex Systems</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Entropy</subject><subject>Exact sciences and technology</subject><subject>Hydrodynamics</subject><subject>Liquid Crystals</subject><subject>Models, Biological</subject><subject>Models, Theoretical</subject><subject>Nanotechnology</subject><subject>Orientational order of liquid crystals; electric and magnetic field effects on order</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Polymer Sciences</subject><subject>Regular Article</subject><subject>Soft and Granular Matter</subject><subject>Structure of solids and liquids; crystallography</subject><subject>Surfaces and Interfaces</subject><subject>Systems Theory</subject><subject>Thermodynamics</subject><subject>Thin Films</subject><issn>1292-8941</issn><issn>1292-895X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1r3DAQhkVoSDZp_0AORZdCLk70ZdnupYSQL1gIhBZ6KUKWx6kWr-Vq7IX8-8i72-QWdJAGPfMO8xByxtkF54pdwrCCSy8YV1kqS5mpA7LgohJZWeW_P729FT8mJ4grxhLK5BE5FrnQTIp8Qf48wQYi-roDavuGNh7RD3b0G6Br62JAFwbvqAv9GH09jT70SMdAx79AcYyAqYIeQ_xOr9y2LUQ62JSygR-fyWFrO4Qv-_uU_Lq9-Xl9ny0f7x6ur5aZy7kcM8tYqdu8FlpyYVkBotJt0zilKm3z2taFZtaVGoq8dW3FC11Kq9MpJAdZCXlKzne5Qwz_JsDRrD066DrbQ5jQ8FxrxSqmVELFDp13wwitGaJf2_hiODOzVjNrNVutZqvVzE1f9_lTvYbmreW_xwR82wMWne3aaHvn8Z0ryyqtxhIndxymr_4ZolmFKfbJzUfjXwG2hJL9</recordid><startdate>20140901</startdate><enddate>20140901</enddate><creator>Brand, H. R.</creator><creator>Pleiner, H.</creator><creator>Svenšek, D.</creator><general>Springer Berlin Heidelberg</general><general>EDP Sciences</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20140901</creationdate><title>Reversible and dissipative macroscopic contributions to the stress tensor: Active or passive?</title><author>Brand, H. R. ; Pleiner, H. ; Svenšek, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c513t-a0086f5b26312a07e296fddc4496a5bab760ac86e75fcf917683a6a6a731e3923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animals</topic><topic>Biological and Medical Physics</topic><topic>Biophysical Phenomena</topic><topic>Biophysics</topic><topic>Complex Fluids and Microfluidics</topic><topic>Complex Systems</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Entropy</topic><topic>Exact sciences and technology</topic><topic>Hydrodynamics</topic><topic>Liquid Crystals</topic><topic>Models, Biological</topic><topic>Models, Theoretical</topic><topic>Nanotechnology</topic><topic>Orientational order of liquid crystals; electric and magnetic field effects on order</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Polymer Sciences</topic><topic>Regular Article</topic><topic>Soft and Granular Matter</topic><topic>Structure of solids and liquids; crystallography</topic><topic>Surfaces and Interfaces</topic><topic>Systems Theory</topic><topic>Thermodynamics</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brand, H. R.</creatorcontrib><creatorcontrib>Pleiner, H.</creatorcontrib><creatorcontrib>Svenšek, D.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The European physical journal. E, Soft matter and biological physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brand, H. R.</au><au>Pleiner, H.</au><au>Svenšek, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reversible and dissipative macroscopic contributions to the stress tensor: Active or passive?</atitle><jtitle>The European physical journal. E, Soft matter and biological physics</jtitle><stitle>Eur. Phys. J. E</stitle><addtitle>Eur Phys J E Soft Matter</addtitle><date>2014-09-01</date><risdate>2014</risdate><volume>37</volume><issue>9</issue><spage>40</spage><epage>40</epage><pages>40-40</pages><artnum>83</artnum><issn>1292-8941</issn><eissn>1292-895X</eissn><abstract>.
The issue of dynamic contributions to the macroscopic stress tensor has been of high interest in the field of bio-inspired active systems over the last few years. Of particular interest is a direct coupling (“active term”) of the stress tensor with the order parameter, the latter describing orientational order induced by active processes. Here we analyze more generally possible reversible and irreversible dynamic contributions to the stress tensor for various passive and active macroscopic systems. This includes systems with tetrahedral/octupolar order, polar and non-polar (chiral) nematic and smectic liquid crystals, as well as active fluids with a dynamic preferred (polar or non-polar) direction. We show that it cannot
a priori
be seen, neither from the symmetry properties of the macroscopic variables involved, nor from the structure of the cross-coupling contributions to the stress tensor, whether the system studied is active or passive. Rather, that depends on whether the variables that give rise to those cross-couplings in the stress tensor are driven or not. We demonstrate that several simplified descriptions of active systems in the literature that neglect the necessary counter term to the active term violate linear irreversible thermodynamics and lead to an unphysical contribution to the entropy production.
Graphical abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>25260325</pmid><doi>10.1140/epje/i2014-14083-4</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1292-8941 |
ispartof | The European physical journal. E, Soft matter and biological physics, 2014-09, Vol.37 (9), p.40-40, Article 83 |
issn | 1292-8941 1292-895X |
language | eng |
recordid | cdi_proquest_miscellaneous_1566409044 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Animals Biological and Medical Physics Biophysical Phenomena Biophysics Complex Fluids and Microfluidics Complex Systems Condensed matter: structure, mechanical and thermal properties Entropy Exact sciences and technology Hydrodynamics Liquid Crystals Models, Biological Models, Theoretical Nanotechnology Orientational order of liquid crystals electric and magnetic field effects on order Physics Physics and Astronomy Polymer Sciences Regular Article Soft and Granular Matter Structure of solids and liquids crystallography Surfaces and Interfaces Systems Theory Thermodynamics Thin Films |
title | Reversible and dissipative macroscopic contributions to the stress tensor: Active or passive? |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T13%3A38%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reversible%20and%20dissipative%20macroscopic%20contributions%20to%20the%20stress%20tensor:%20Active%20or%20passive?&rft.jtitle=The%20European%20physical%20journal.%20E,%20Soft%20matter%20and%20biological%20physics&rft.au=Brand,%20H.%20R.&rft.date=2014-09-01&rft.volume=37&rft.issue=9&rft.spage=40&rft.epage=40&rft.pages=40-40&rft.artnum=83&rft.issn=1292-8941&rft.eissn=1292-895X&rft_id=info:doi/10.1140/epje/i2014-14083-4&rft_dat=%3Cproquest_cross%3E1566409044%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1566409044&rft_id=info:pmid/25260325&rfr_iscdi=true |