Sphingosine-1-phosphate promotes expansion of cancer stem cells via S1PR3 by a ligand-independent Notch activation

Many tumours originate from cancer stem cells (CSCs), which is a small population of cells that display stem cell properties. However, the molecular mechanisms that regulate CSC frequency remain poorly understood. Here, using microarray screening in aldehyde dehydrogenase (ALDH)-positive CSC model,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2014-09, Vol.5 (1), p.4806-4806, Article 4806
Hauptverfasser: Hirata, Naoya, Yamada, Shigeru, Shoda, Takuji, Kurihara, Masaaki, Sekino, Yuko, Kanda, Yasunari
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4806
container_issue 1
container_start_page 4806
container_title Nature communications
container_volume 5
creator Hirata, Naoya
Yamada, Shigeru
Shoda, Takuji
Kurihara, Masaaki
Sekino, Yuko
Kanda, Yasunari
description Many tumours originate from cancer stem cells (CSCs), which is a small population of cells that display stem cell properties. However, the molecular mechanisms that regulate CSC frequency remain poorly understood. Here, using microarray screening in aldehyde dehydrogenase (ALDH)-positive CSC model, we identify a fundamental role for a lipid mediator sphingosine-1-phosphate (S1P) in CSC expansion. Stimulation with S1P enhances ALDH-positive CSCs via S1P receptor 3 (S1PR3) and subsequent Notch activation. CSCs overexpressing sphingosine kinase 1 (SphK1), an S1P-producing enzyme, show increased ability to develop tumours in nude mice, compared with parent cells or CSCs. Tumorigenicity of CSCs overexpressing SphK1 is inhibited by S1PR3 knockdown or S1PR3 antagonist. Breast cancer patient-derived mammospheres contain SphK1 + /ALDH1 + cells or S1PR3 + /ALDH1 + cells. Our findings provide new insights into the lipid-mediated regulation of CSCs via Notch signalling, and rationale for targeting S1PR3 in cancer. Many tumours originate from cancer stem cells (CSCs), a small population of cells that display stem cell properties. Here Kanda and colleagues show that the lipid mediator, sphingosine-1 phosphate (S1P), enhances expansion of ALDH-positive CSCs via S1P receptor 3 (S1PR3) and subsequent Notch activation, providing a rationale for targeting S1PR3 in cancer.
doi_str_mv 10.1038/ncomms5806
format Article
fullrecord <record><control><sourceid>proquest_C6C</sourceid><recordid>TN_cdi_proquest_miscellaneous_1566408116</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3442162591</sourcerecordid><originalsourceid>FETCH-LOGICAL-c453t-7da2f06ebb4902334f8da70e2a6fffa8945827ce6774cdd78177032393cd40f83</originalsourceid><addsrcrecordid>eNpl0V1LHDEUBuAgla6s3vQHSMCboozmayaZyyJ-FERF2-shmznZzbKTTJPsUv-9WdZaaXORBPLw5iQHoS-UnFPC1YU3YRhSrUizhw4YEbSikvFPH_YTdJTSkpTBW6qE-IwmrGa1aIU4QPF5XDg_D8l5qGg1LkIaFzoDHmMYQoaE4feofXLB42Cx0d5AxCnDgA2sVglvnMbP9PGJ49kL1njl5tr3lfM9jFAmn_F9yGaBtcluo3PJOUT7Vq8SHL2tU_Tz-urH5W1193Dz_fLbXWVEzXMle80saWA2Ey1hnAurei0JMN1Ya7VqRa2YNNBIKUzfS0WlJJzxlpteEKv4FH3d5Zan_FpDyt3g0rZo7SGsU0frphFEUdoUevIPXYZ19KW6rRKSC6p4Uac7ZWJIKYLtxugGHV86SrptM7q_zSj4-C1yPRugf6d_vr6Asx1I5cjPIX648_-4V2nBlFE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1564734183</pqid></control><display><type>article</type><title>Sphingosine-1-phosphate promotes expansion of cancer stem cells via S1PR3 by a ligand-independent Notch activation</title><source>Springer Nature OA Free Journals</source><creator>Hirata, Naoya ; Yamada, Shigeru ; Shoda, Takuji ; Kurihara, Masaaki ; Sekino, Yuko ; Kanda, Yasunari</creator><creatorcontrib>Hirata, Naoya ; Yamada, Shigeru ; Shoda, Takuji ; Kurihara, Masaaki ; Sekino, Yuko ; Kanda, Yasunari</creatorcontrib><description>Many tumours originate from cancer stem cells (CSCs), which is a small population of cells that display stem cell properties. However, the molecular mechanisms that regulate CSC frequency remain poorly understood. Here, using microarray screening in aldehyde dehydrogenase (ALDH)-positive CSC model, we identify a fundamental role for a lipid mediator sphingosine-1-phosphate (S1P) in CSC expansion. Stimulation with S1P enhances ALDH-positive CSCs via S1P receptor 3 (S1PR3) and subsequent Notch activation. CSCs overexpressing sphingosine kinase 1 (SphK1), an S1P-producing enzyme, show increased ability to develop tumours in nude mice, compared with parent cells or CSCs. Tumorigenicity of CSCs overexpressing SphK1 is inhibited by S1PR3 knockdown or S1PR3 antagonist. Breast cancer patient-derived mammospheres contain SphK1 + /ALDH1 + cells or S1PR3 + /ALDH1 + cells. Our findings provide new insights into the lipid-mediated regulation of CSCs via Notch signalling, and rationale for targeting S1PR3 in cancer. Many tumours originate from cancer stem cells (CSCs), a small population of cells that display stem cell properties. Here Kanda and colleagues show that the lipid mediator, sphingosine-1 phosphate (S1P), enhances expansion of ALDH-positive CSCs via S1P receptor 3 (S1PR3) and subsequent Notch activation, providing a rationale for targeting S1PR3 in cancer.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/ncomms5806</identifier><identifier>PMID: 25254944</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/95 ; 631/67/71 ; 631/80/86 ; 96 ; 96/100 ; 96/31 ; 96/95 ; Animals ; Breast Neoplasms - enzymology ; Breast Neoplasms - genetics ; Breast Neoplasms - metabolism ; Breast Neoplasms - physiopathology ; Cell Line, Tumor ; Cell Proliferation ; Female ; Humanities and Social Sciences ; Humans ; Lysophospholipids - metabolism ; Mice ; Mice, Inbred BALB C ; multidisciplinary ; Neoplastic Stem Cells - cytology ; Neoplastic Stem Cells - metabolism ; Phosphotransferases (Alcohol Group Acceptor) - genetics ; Phosphotransferases (Alcohol Group Acceptor) - metabolism ; Receptors, Lysosphingolipid - genetics ; Receptors, Lysosphingolipid - metabolism ; Receptors, Notch - genetics ; Receptors, Notch - metabolism ; Science ; Science (multidisciplinary) ; Signal Transduction ; Sphingosine - analogs &amp; derivatives ; Sphingosine - metabolism</subject><ispartof>Nature communications, 2014-09, Vol.5 (1), p.4806-4806, Article 4806</ispartof><rights>Springer Nature Limited 2014</rights><rights>Copyright Nature Publishing Group Sep 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c453t-7da2f06ebb4902334f8da70e2a6fffa8945827ce6774cdd78177032393cd40f83</citedby><cites>FETCH-LOGICAL-c453t-7da2f06ebb4902334f8da70e2a6fffa8945827ce6774cdd78177032393cd40f83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/ncomms5806$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://doi.org/10.1038/ncomms5806$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41099,42168,51554</link.rule.ids><linktorsrc>$$Uhttps://doi.org/10.1038/ncomms5806$$EView_record_in_Springer_Nature$$FView_record_in_$$GSpringer_Nature</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25254944$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hirata, Naoya</creatorcontrib><creatorcontrib>Yamada, Shigeru</creatorcontrib><creatorcontrib>Shoda, Takuji</creatorcontrib><creatorcontrib>Kurihara, Masaaki</creatorcontrib><creatorcontrib>Sekino, Yuko</creatorcontrib><creatorcontrib>Kanda, Yasunari</creatorcontrib><title>Sphingosine-1-phosphate promotes expansion of cancer stem cells via S1PR3 by a ligand-independent Notch activation</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Many tumours originate from cancer stem cells (CSCs), which is a small population of cells that display stem cell properties. However, the molecular mechanisms that regulate CSC frequency remain poorly understood. Here, using microarray screening in aldehyde dehydrogenase (ALDH)-positive CSC model, we identify a fundamental role for a lipid mediator sphingosine-1-phosphate (S1P) in CSC expansion. Stimulation with S1P enhances ALDH-positive CSCs via S1P receptor 3 (S1PR3) and subsequent Notch activation. CSCs overexpressing sphingosine kinase 1 (SphK1), an S1P-producing enzyme, show increased ability to develop tumours in nude mice, compared with parent cells or CSCs. Tumorigenicity of CSCs overexpressing SphK1 is inhibited by S1PR3 knockdown or S1PR3 antagonist. Breast cancer patient-derived mammospheres contain SphK1 + /ALDH1 + cells or S1PR3 + /ALDH1 + cells. Our findings provide new insights into the lipid-mediated regulation of CSCs via Notch signalling, and rationale for targeting S1PR3 in cancer. Many tumours originate from cancer stem cells (CSCs), a small population of cells that display stem cell properties. Here Kanda and colleagues show that the lipid mediator, sphingosine-1 phosphate (S1P), enhances expansion of ALDH-positive CSCs via S1P receptor 3 (S1PR3) and subsequent Notch activation, providing a rationale for targeting S1PR3 in cancer.</description><subject>13/95</subject><subject>631/67/71</subject><subject>631/80/86</subject><subject>96</subject><subject>96/100</subject><subject>96/31</subject><subject>96/95</subject><subject>Animals</subject><subject>Breast Neoplasms - enzymology</subject><subject>Breast Neoplasms - genetics</subject><subject>Breast Neoplasms - metabolism</subject><subject>Breast Neoplasms - physiopathology</subject><subject>Cell Line, Tumor</subject><subject>Cell Proliferation</subject><subject>Female</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Lysophospholipids - metabolism</subject><subject>Mice</subject><subject>Mice, Inbred BALB C</subject><subject>multidisciplinary</subject><subject>Neoplastic Stem Cells - cytology</subject><subject>Neoplastic Stem Cells - metabolism</subject><subject>Phosphotransferases (Alcohol Group Acceptor) - genetics</subject><subject>Phosphotransferases (Alcohol Group Acceptor) - metabolism</subject><subject>Receptors, Lysosphingolipid - genetics</subject><subject>Receptors, Lysosphingolipid - metabolism</subject><subject>Receptors, Notch - genetics</subject><subject>Receptors, Notch - metabolism</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Signal Transduction</subject><subject>Sphingosine - analogs &amp; derivatives</subject><subject>Sphingosine - metabolism</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpl0V1LHDEUBuAgla6s3vQHSMCboozmayaZyyJ-FERF2-shmznZzbKTTJPsUv-9WdZaaXORBPLw5iQHoS-UnFPC1YU3YRhSrUizhw4YEbSikvFPH_YTdJTSkpTBW6qE-IwmrGa1aIU4QPF5XDg_D8l5qGg1LkIaFzoDHmMYQoaE4feofXLB42Cx0d5AxCnDgA2sVglvnMbP9PGJ49kL1njl5tr3lfM9jFAmn_F9yGaBtcluo3PJOUT7Vq8SHL2tU_Tz-urH5W1193Dz_fLbXWVEzXMle80saWA2Ey1hnAurei0JMN1Ya7VqRa2YNNBIKUzfS0WlJJzxlpteEKv4FH3d5Zan_FpDyt3g0rZo7SGsU0frphFEUdoUevIPXYZ19KW6rRKSC6p4Uac7ZWJIKYLtxugGHV86SrptM7q_zSj4-C1yPRugf6d_vr6Asx1I5cjPIX648_-4V2nBlFE</recordid><startdate>20140925</startdate><enddate>20140925</enddate><creator>Hirata, Naoya</creator><creator>Yamada, Shigeru</creator><creator>Shoda, Takuji</creator><creator>Kurihara, Masaaki</creator><creator>Sekino, Yuko</creator><creator>Kanda, Yasunari</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>20140925</creationdate><title>Sphingosine-1-phosphate promotes expansion of cancer stem cells via S1PR3 by a ligand-independent Notch activation</title><author>Hirata, Naoya ; Yamada, Shigeru ; Shoda, Takuji ; Kurihara, Masaaki ; Sekino, Yuko ; Kanda, Yasunari</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c453t-7da2f06ebb4902334f8da70e2a6fffa8945827ce6774cdd78177032393cd40f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>13/95</topic><topic>631/67/71</topic><topic>631/80/86</topic><topic>96</topic><topic>96/100</topic><topic>96/31</topic><topic>96/95</topic><topic>Animals</topic><topic>Breast Neoplasms - enzymology</topic><topic>Breast Neoplasms - genetics</topic><topic>Breast Neoplasms - metabolism</topic><topic>Breast Neoplasms - physiopathology</topic><topic>Cell Line, Tumor</topic><topic>Cell Proliferation</topic><topic>Female</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Lysophospholipids - metabolism</topic><topic>Mice</topic><topic>Mice, Inbred BALB C</topic><topic>multidisciplinary</topic><topic>Neoplastic Stem Cells - cytology</topic><topic>Neoplastic Stem Cells - metabolism</topic><topic>Phosphotransferases (Alcohol Group Acceptor) - genetics</topic><topic>Phosphotransferases (Alcohol Group Acceptor) - metabolism</topic><topic>Receptors, Lysosphingolipid - genetics</topic><topic>Receptors, Lysosphingolipid - metabolism</topic><topic>Receptors, Notch - genetics</topic><topic>Receptors, Notch - metabolism</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Signal Transduction</topic><topic>Sphingosine - analogs &amp; derivatives</topic><topic>Sphingosine - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hirata, Naoya</creatorcontrib><creatorcontrib>Yamada, Shigeru</creatorcontrib><creatorcontrib>Shoda, Takuji</creatorcontrib><creatorcontrib>Kurihara, Masaaki</creatorcontrib><creatorcontrib>Sekino, Yuko</creatorcontrib><creatorcontrib>Kanda, Yasunari</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hirata, Naoya</au><au>Yamada, Shigeru</au><au>Shoda, Takuji</au><au>Kurihara, Masaaki</au><au>Sekino, Yuko</au><au>Kanda, Yasunari</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sphingosine-1-phosphate promotes expansion of cancer stem cells via S1PR3 by a ligand-independent Notch activation</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2014-09-25</date><risdate>2014</risdate><volume>5</volume><issue>1</issue><spage>4806</spage><epage>4806</epage><pages>4806-4806</pages><artnum>4806</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Many tumours originate from cancer stem cells (CSCs), which is a small population of cells that display stem cell properties. However, the molecular mechanisms that regulate CSC frequency remain poorly understood. Here, using microarray screening in aldehyde dehydrogenase (ALDH)-positive CSC model, we identify a fundamental role for a lipid mediator sphingosine-1-phosphate (S1P) in CSC expansion. Stimulation with S1P enhances ALDH-positive CSCs via S1P receptor 3 (S1PR3) and subsequent Notch activation. CSCs overexpressing sphingosine kinase 1 (SphK1), an S1P-producing enzyme, show increased ability to develop tumours in nude mice, compared with parent cells or CSCs. Tumorigenicity of CSCs overexpressing SphK1 is inhibited by S1PR3 knockdown or S1PR3 antagonist. Breast cancer patient-derived mammospheres contain SphK1 + /ALDH1 + cells or S1PR3 + /ALDH1 + cells. Our findings provide new insights into the lipid-mediated regulation of CSCs via Notch signalling, and rationale for targeting S1PR3 in cancer. Many tumours originate from cancer stem cells (CSCs), a small population of cells that display stem cell properties. Here Kanda and colleagues show that the lipid mediator, sphingosine-1 phosphate (S1P), enhances expansion of ALDH-positive CSCs via S1P receptor 3 (S1PR3) and subsequent Notch activation, providing a rationale for targeting S1PR3 in cancer.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>25254944</pmid><doi>10.1038/ncomms5806</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2041-1723
ispartof Nature communications, 2014-09, Vol.5 (1), p.4806-4806, Article 4806
issn 2041-1723
2041-1723
language eng
recordid cdi_proquest_miscellaneous_1566408116
source Springer Nature OA Free Journals
subjects 13/95
631/67/71
631/80/86
96
96/100
96/31
96/95
Animals
Breast Neoplasms - enzymology
Breast Neoplasms - genetics
Breast Neoplasms - metabolism
Breast Neoplasms - physiopathology
Cell Line, Tumor
Cell Proliferation
Female
Humanities and Social Sciences
Humans
Lysophospholipids - metabolism
Mice
Mice, Inbred BALB C
multidisciplinary
Neoplastic Stem Cells - cytology
Neoplastic Stem Cells - metabolism
Phosphotransferases (Alcohol Group Acceptor) - genetics
Phosphotransferases (Alcohol Group Acceptor) - metabolism
Receptors, Lysosphingolipid - genetics
Receptors, Lysosphingolipid - metabolism
Receptors, Notch - genetics
Receptors, Notch - metabolism
Science
Science (multidisciplinary)
Signal Transduction
Sphingosine - analogs & derivatives
Sphingosine - metabolism
title Sphingosine-1-phosphate promotes expansion of cancer stem cells via S1PR3 by a ligand-independent Notch activation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T22%3A52%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_C6C&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sphingosine-1-phosphate%20promotes%20expansion%20of%20cancer%20stem%20cells%20via%20S1PR3%20by%20a%20ligand-independent%20Notch%20activation&rft.jtitle=Nature%20communications&rft.au=Hirata,%20Naoya&rft.date=2014-09-25&rft.volume=5&rft.issue=1&rft.spage=4806&rft.epage=4806&rft.pages=4806-4806&rft.artnum=4806&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/ncomms5806&rft_dat=%3Cproquest_C6C%3E3442162591%3C/proquest_C6C%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1564734183&rft_id=info:pmid/25254944&rfr_iscdi=true