A Semi-Automatic Segmentation Method for the Structural Analysis of Carotid Atherosclerotic Plaques by Computed Tomography Angiography

Aim: Computed tomography angiography (CTA) is currently the most reliable imaging technique for evaluating and planning the treatment of atherosclerosis. The drawbacks of the technique are its low spatial resolution and challenging manual measurements. The purpose of this study was to develop a semi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Atherosclerosis and Thrombosis 2014/09/24, Vol.21(9), pp.930-940
Hauptverfasser: Florentino Luciano Caetano dos Santos, Joutsen, Atte, Terada, Mitsugu, Salenius, Juha, Eskola, Hannu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 940
container_issue 9
container_start_page 930
container_title Journal of Atherosclerosis and Thrombosis
container_volume 21
creator Florentino Luciano Caetano dos Santos
Joutsen, Atte
Terada, Mitsugu
Salenius, Juha
Eskola, Hannu
description Aim: Computed tomography angiography (CTA) is currently the most reliable imaging technique for evaluating and planning the treatment of atherosclerosis. The drawbacks of the technique are its low spatial resolution and challenging manual measurements. The purpose of this study was to develop a semi-automatic method to segment vessel walls, surrounding tissue, and the carotid artery lumen to measure the severity of stenosis. Methods: In vivo contrast CTA images from eight patients undergoing endarterectomy were analyzed using a tailored five-step process involving an adaptive segmentation algorithm and region growing to measure the maximum percent stenosis in the cross-sectional area of the carotid artery. The accuracy of this method was compared with that of manual measurements made by physicians. Results: There were no significant differences between the maximum percent stenosis value obtained using the semi-automatic tool and that obtained using manual measurements (6%; p=0.31). The data acquisition and analysis required an average of 145 seconds. Conclusion: This new semi-automatic segmentation method for CTA provides a fast and reliable tool to quantify the severity of carotid artery stenosis.
doi_str_mv 10.5551/jat.21279
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1566115453</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1566115453</sourcerecordid><originalsourceid>FETCH-LOGICAL-c567t-8db425544e6284472126823c17f9ddd8ee6a1edf03c0fd564f0fb5e2400f62f13</originalsourceid><addsrcrecordid>eNo9kMtOGzEUhq2qqFzaBS-AvCyLAV9nnFU1imhBAlEJurYc-ziZaGac2p5FXoDnxiEhG_s_8qdPPj9Cl5TcSCnp7drkG0ZZM_uCzqhSpOKq4V9L5qJk0ahTdJ7SmhDOpWTf0CkTiouZomforcUvMHRVO-UwmNzZMi4HGHPJYcRPkFfBYR8izivALzlONk_R9LgdTb9NXcLB47mJIXcOt4WJIdkedrPFf3vzf4KEF1s8D8NmyuDwaxjCMprNalsUy-6Qv6MTb_oEPw73Bfr3--51fl89Pv95mLePlZV1kyvlFoJJKQTUTAnRlKVrxbiljZ855xRAbSg4T7gl3slaeOIXEpggxNfMU36Bfu69mxh2X8t66JKFvjcjhClpKuuaUikkL-j1HrVlpRTB603sBhO3mhK9q12X2vVH7YW9OminxQDuSH72XIBfe2CdslnCETCx9NTDQaVnu-NDeXyxKxM1jPwd6EyWnQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1566115453</pqid></control><display><type>article</type><title>A Semi-Automatic Segmentation Method for the Structural Analysis of Carotid Atherosclerotic Plaques by Computed Tomography Angiography</title><source>MEDLINE</source><source>EZB Free E-Journals</source><source>J-STAGE</source><creator>Florentino Luciano Caetano dos Santos ; Joutsen, Atte ; Terada, Mitsugu ; Salenius, Juha ; Eskola, Hannu</creator><creatorcontrib>Florentino Luciano Caetano dos Santos ; Joutsen, Atte ; Terada, Mitsugu ; Salenius, Juha ; Eskola, Hannu</creatorcontrib><description>Aim: Computed tomography angiography (CTA) is currently the most reliable imaging technique for evaluating and planning the treatment of atherosclerosis. The drawbacks of the technique are its low spatial resolution and challenging manual measurements. The purpose of this study was to develop a semi-automatic method to segment vessel walls, surrounding tissue, and the carotid artery lumen to measure the severity of stenosis. Methods: In vivo contrast CTA images from eight patients undergoing endarterectomy were analyzed using a tailored five-step process involving an adaptive segmentation algorithm and region growing to measure the maximum percent stenosis in the cross-sectional area of the carotid artery. The accuracy of this method was compared with that of manual measurements made by physicians. Results: There were no significant differences between the maximum percent stenosis value obtained using the semi-automatic tool and that obtained using manual measurements (6%; p=0.31). The data acquisition and analysis required an average of 145 seconds. Conclusion: This new semi-automatic segmentation method for CTA provides a fast and reliable tool to quantify the severity of carotid artery stenosis.</description><identifier>ISSN: 1340-3478</identifier><identifier>EISSN: 1880-3873</identifier><identifier>DOI: 10.5551/jat.21279</identifier><identifier>PMID: 24834981</identifier><language>eng</language><publisher>Japan: Japan Atherosclerosis Society</publisher><subject>Aged ; Aged, 80 and over ; Algorithms ; Angiography - methods ; Atherosclerosis ; Automation ; Carotid ; Carotid Stenosis - diagnostic imaging ; Carotid Stenosis - surgery ; Computed tomography angiography ; Female ; Humans ; Image Processing, Computer-Assisted - methods ; Male ; Middle Aged ; Plaque, Atherosclerotic - diagnostic imaging ; Plaque, Atherosclerotic - surgery ; Segmentation ; Severity of Illness Index ; Stenosis ; Tomography, X-Ray Computed - methods</subject><ispartof>Journal of Atherosclerosis and Thrombosis, 2014/09/24, Vol.21(9), pp.930-940</ispartof><rights>2014 Japan Atherosclerosis Society</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c567t-8db425544e6284472126823c17f9ddd8ee6a1edf03c0fd564f0fb5e2400f62f13</citedby><cites>FETCH-LOGICAL-c567t-8db425544e6284472126823c17f9ddd8ee6a1edf03c0fd564f0fb5e2400f62f13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1877,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24834981$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Florentino Luciano Caetano dos Santos</creatorcontrib><creatorcontrib>Joutsen, Atte</creatorcontrib><creatorcontrib>Terada, Mitsugu</creatorcontrib><creatorcontrib>Salenius, Juha</creatorcontrib><creatorcontrib>Eskola, Hannu</creatorcontrib><title>A Semi-Automatic Segmentation Method for the Structural Analysis of Carotid Atherosclerotic Plaques by Computed Tomography Angiography</title><title>Journal of Atherosclerosis and Thrombosis</title><addtitle>JAT</addtitle><description>Aim: Computed tomography angiography (CTA) is currently the most reliable imaging technique for evaluating and planning the treatment of atherosclerosis. The drawbacks of the technique are its low spatial resolution and challenging manual measurements. The purpose of this study was to develop a semi-automatic method to segment vessel walls, surrounding tissue, and the carotid artery lumen to measure the severity of stenosis. Methods: In vivo contrast CTA images from eight patients undergoing endarterectomy were analyzed using a tailored five-step process involving an adaptive segmentation algorithm and region growing to measure the maximum percent stenosis in the cross-sectional area of the carotid artery. The accuracy of this method was compared with that of manual measurements made by physicians. Results: There were no significant differences between the maximum percent stenosis value obtained using the semi-automatic tool and that obtained using manual measurements (6%; p=0.31). The data acquisition and analysis required an average of 145 seconds. Conclusion: This new semi-automatic segmentation method for CTA provides a fast and reliable tool to quantify the severity of carotid artery stenosis.</description><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Algorithms</subject><subject>Angiography - methods</subject><subject>Atherosclerosis</subject><subject>Automation</subject><subject>Carotid</subject><subject>Carotid Stenosis - diagnostic imaging</subject><subject>Carotid Stenosis - surgery</subject><subject>Computed tomography angiography</subject><subject>Female</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Plaque, Atherosclerotic - diagnostic imaging</subject><subject>Plaque, Atherosclerotic - surgery</subject><subject>Segmentation</subject><subject>Severity of Illness Index</subject><subject>Stenosis</subject><subject>Tomography, X-Ray Computed - methods</subject><issn>1340-3478</issn><issn>1880-3873</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kMtOGzEUhq2qqFzaBS-AvCyLAV9nnFU1imhBAlEJurYc-ziZaGac2p5FXoDnxiEhG_s_8qdPPj9Cl5TcSCnp7drkG0ZZM_uCzqhSpOKq4V9L5qJk0ahTdJ7SmhDOpWTf0CkTiouZomforcUvMHRVO-UwmNzZMi4HGHPJYcRPkFfBYR8izivALzlONk_R9LgdTb9NXcLB47mJIXcOt4WJIdkedrPFf3vzf4KEF1s8D8NmyuDwaxjCMprNalsUy-6Qv6MTb_oEPw73Bfr3--51fl89Pv95mLePlZV1kyvlFoJJKQTUTAnRlKVrxbiljZ855xRAbSg4T7gl3slaeOIXEpggxNfMU36Bfu69mxh2X8t66JKFvjcjhClpKuuaUikkL-j1HrVlpRTB603sBhO3mhK9q12X2vVH7YW9OminxQDuSH72XIBfe2CdslnCETCx9NTDQaVnu-NDeXyxKxM1jPwd6EyWnQ</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Florentino Luciano Caetano dos Santos</creator><creator>Joutsen, Atte</creator><creator>Terada, Mitsugu</creator><creator>Salenius, Juha</creator><creator>Eskola, Hannu</creator><general>Japan Atherosclerosis Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20140101</creationdate><title>A Semi-Automatic Segmentation Method for the Structural Analysis of Carotid Atherosclerotic Plaques by Computed Tomography Angiography</title><author>Florentino Luciano Caetano dos Santos ; Joutsen, Atte ; Terada, Mitsugu ; Salenius, Juha ; Eskola, Hannu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c567t-8db425544e6284472126823c17f9ddd8ee6a1edf03c0fd564f0fb5e2400f62f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Algorithms</topic><topic>Angiography - methods</topic><topic>Atherosclerosis</topic><topic>Automation</topic><topic>Carotid</topic><topic>Carotid Stenosis - diagnostic imaging</topic><topic>Carotid Stenosis - surgery</topic><topic>Computed tomography angiography</topic><topic>Female</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Plaque, Atherosclerotic - diagnostic imaging</topic><topic>Plaque, Atherosclerotic - surgery</topic><topic>Segmentation</topic><topic>Severity of Illness Index</topic><topic>Stenosis</topic><topic>Tomography, X-Ray Computed - methods</topic><toplevel>online_resources</toplevel><creatorcontrib>Florentino Luciano Caetano dos Santos</creatorcontrib><creatorcontrib>Joutsen, Atte</creatorcontrib><creatorcontrib>Terada, Mitsugu</creatorcontrib><creatorcontrib>Salenius, Juha</creatorcontrib><creatorcontrib>Eskola, Hannu</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of Atherosclerosis and Thrombosis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Florentino Luciano Caetano dos Santos</au><au>Joutsen, Atte</au><au>Terada, Mitsugu</au><au>Salenius, Juha</au><au>Eskola, Hannu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Semi-Automatic Segmentation Method for the Structural Analysis of Carotid Atherosclerotic Plaques by Computed Tomography Angiography</atitle><jtitle>Journal of Atherosclerosis and Thrombosis</jtitle><addtitle>JAT</addtitle><date>2014-01-01</date><risdate>2014</risdate><volume>21</volume><issue>9</issue><spage>930</spage><epage>940</epage><pages>930-940</pages><issn>1340-3478</issn><eissn>1880-3873</eissn><abstract>Aim: Computed tomography angiography (CTA) is currently the most reliable imaging technique for evaluating and planning the treatment of atherosclerosis. The drawbacks of the technique are its low spatial resolution and challenging manual measurements. The purpose of this study was to develop a semi-automatic method to segment vessel walls, surrounding tissue, and the carotid artery lumen to measure the severity of stenosis. Methods: In vivo contrast CTA images from eight patients undergoing endarterectomy were analyzed using a tailored five-step process involving an adaptive segmentation algorithm and region growing to measure the maximum percent stenosis in the cross-sectional area of the carotid artery. The accuracy of this method was compared with that of manual measurements made by physicians. Results: There were no significant differences between the maximum percent stenosis value obtained using the semi-automatic tool and that obtained using manual measurements (6%; p=0.31). The data acquisition and analysis required an average of 145 seconds. Conclusion: This new semi-automatic segmentation method for CTA provides a fast and reliable tool to quantify the severity of carotid artery stenosis.</abstract><cop>Japan</cop><pub>Japan Atherosclerosis Society</pub><pmid>24834981</pmid><doi>10.5551/jat.21279</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1340-3478
ispartof Journal of Atherosclerosis and Thrombosis, 2014/09/24, Vol.21(9), pp.930-940
issn 1340-3478
1880-3873
language eng
recordid cdi_proquest_miscellaneous_1566115453
source MEDLINE; EZB Free E-Journals; J-STAGE
subjects Aged
Aged, 80 and over
Algorithms
Angiography - methods
Atherosclerosis
Automation
Carotid
Carotid Stenosis - diagnostic imaging
Carotid Stenosis - surgery
Computed tomography angiography
Female
Humans
Image Processing, Computer-Assisted - methods
Male
Middle Aged
Plaque, Atherosclerotic - diagnostic imaging
Plaque, Atherosclerotic - surgery
Segmentation
Severity of Illness Index
Stenosis
Tomography, X-Ray Computed - methods
title A Semi-Automatic Segmentation Method for the Structural Analysis of Carotid Atherosclerotic Plaques by Computed Tomography Angiography
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T16%3A49%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Semi-Automatic%20Segmentation%20Method%20for%20the%20Structural%20Analysis%20of%20Carotid%20Atherosclerotic%20Plaques%20by%20Computed%20Tomography%20Angiography&rft.jtitle=Journal%20of%20Atherosclerosis%20and%20Thrombosis&rft.au=Florentino%20Luciano%20Caetano%20dos%20Santos&rft.date=2014-01-01&rft.volume=21&rft.issue=9&rft.spage=930&rft.epage=940&rft.pages=930-940&rft.issn=1340-3478&rft.eissn=1880-3873&rft_id=info:doi/10.5551/jat.21279&rft_dat=%3Cproquest_cross%3E1566115453%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1566115453&rft_id=info:pmid/24834981&rfr_iscdi=true