Ensemble Predictions of Recovery Rates

In many domains, the combined opinion of a committee of experts provides better decisions than the judgment of a single expert. This paper shows how to implement a successful ensemble strategy for predicting recovery rates on defaulted debts. Using data from Moody’s Ultimate Recovery Database, it is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of financial services research 2014-10, Vol.46 (2), p.177-193
1. Verfasser: Bastos, João A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 193
container_issue 2
container_start_page 177
container_title Journal of financial services research
container_volume 46
creator Bastos, João A.
description In many domains, the combined opinion of a committee of experts provides better decisions than the judgment of a single expert. This paper shows how to implement a successful ensemble strategy for predicting recovery rates on defaulted debts. Using data from Moody’s Ultimate Recovery Database, it is shown that committees of models derived from the same regression method present better forecasts of recovery rates than a single model. More accurate predictions are observed whether we forecast bond or loan recoveries, and across the entire range of actual recovery values.
doi_str_mv 10.1007/s10693-013-0165-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1563984126</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3422955461</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-e990197aed716796ab057a9b5cd990f32472dfb72f65013b12be9edf096e07183</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK7-AG8FQbxUJ0mTbI6yrB-woCx6Dmk7kS7dZk1aYf-9KfUggochDHne4eEl5JLCLQVQd5GC1DwHOo4UOT8iMypU2hQXx2QGmkG-EAJOyVmMWwDQi0LOyPWqi7grW8xeA9ZN1Te-i5l32QYr_4XhkG1sj_GcnDjbRrz4eefk_WH1tnzK1y-Pz8v7dV4Vhexz1BqoVhZrRaXS0pYglNWlqOr04zgrFKtdqZiTIqmWlJWosXagJYKiCz4nN9PdffCfA8be7JpYYdvaDv0QDRWSJ3HKZEKv_qBbP4Qu2Y0UAE0GLFF0oqrgYwzozD40OxsOhoIZmzNTcybpmLE5w1OGTZmY2O4Dw6_L_4a-AZyobds</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1560011672</pqid></control><display><type>article</type><title>Ensemble Predictions of Recovery Rates</title><source>Business Source Complete</source><source>Springer Nature - Complete Springer Journals</source><creator>Bastos, João A.</creator><creatorcontrib>Bastos, João A.</creatorcontrib><description>In many domains, the combined opinion of a committee of experts provides better decisions than the judgment of a single expert. This paper shows how to implement a successful ensemble strategy for predicting recovery rates on defaulted debts. Using data from Moody’s Ultimate Recovery Database, it is shown that committees of models derived from the same regression method present better forecasts of recovery rates than a single model. More accurate predictions are observed whether we forecast bond or loan recoveries, and across the entire range of actual recovery values.</description><identifier>ISSN: 0920-8550</identifier><identifier>EISSN: 1573-0735</identifier><identifier>DOI: 10.1007/s10693-013-0165-3</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Accuracy ; Collateral ; Committees ; Credit risk ; Datasets ; Default ; Economics and Finance ; External debt ; Finance ; Financial Services ; Forecasting ; Forecasting techniques ; Forecasts ; Judgement ; Loans ; Macroeconomics/Monetary Economics//Financial Economics ; Nonperforming loans ; Regression analysis ; Studies</subject><ispartof>Journal of financial services research, 2014-10, Vol.46 (2), p.177-193</ispartof><rights>Springer Science+Business Media New York 2013</rights><rights>Springer Science+Business Media New York 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-e990197aed716796ab057a9b5cd990f32472dfb72f65013b12be9edf096e07183</citedby><cites>FETCH-LOGICAL-c446t-e990197aed716796ab057a9b5cd990f32472dfb72f65013b12be9edf096e07183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10693-013-0165-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10693-013-0165-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27915,27916,41479,42548,51310</link.rule.ids></links><search><creatorcontrib>Bastos, João A.</creatorcontrib><title>Ensemble Predictions of Recovery Rates</title><title>Journal of financial services research</title><addtitle>J Financ Serv Res</addtitle><description>In many domains, the combined opinion of a committee of experts provides better decisions than the judgment of a single expert. This paper shows how to implement a successful ensemble strategy for predicting recovery rates on defaulted debts. Using data from Moody’s Ultimate Recovery Database, it is shown that committees of models derived from the same regression method present better forecasts of recovery rates than a single model. More accurate predictions are observed whether we forecast bond or loan recoveries, and across the entire range of actual recovery values.</description><subject>Accuracy</subject><subject>Collateral</subject><subject>Committees</subject><subject>Credit risk</subject><subject>Datasets</subject><subject>Default</subject><subject>Economics and Finance</subject><subject>External debt</subject><subject>Finance</subject><subject>Financial Services</subject><subject>Forecasting</subject><subject>Forecasting techniques</subject><subject>Forecasts</subject><subject>Judgement</subject><subject>Loans</subject><subject>Macroeconomics/Monetary Economics//Financial Economics</subject><subject>Nonperforming loans</subject><subject>Regression analysis</subject><subject>Studies</subject><issn>0920-8550</issn><issn>1573-0735</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kE1LxDAQhoMouK7-AG8FQbxUJ0mTbI6yrB-woCx6Dmk7kS7dZk1aYf-9KfUggochDHne4eEl5JLCLQVQd5GC1DwHOo4UOT8iMypU2hQXx2QGmkG-EAJOyVmMWwDQi0LOyPWqi7grW8xeA9ZN1Te-i5l32QYr_4XhkG1sj_GcnDjbRrz4eefk_WH1tnzK1y-Pz8v7dV4Vhexz1BqoVhZrRaXS0pYglNWlqOr04zgrFKtdqZiTIqmWlJWosXagJYKiCz4nN9PdffCfA8be7JpYYdvaDv0QDRWSJ3HKZEKv_qBbP4Qu2Y0UAE0GLFF0oqrgYwzozD40OxsOhoIZmzNTcybpmLE5w1OGTZmY2O4Dw6_L_4a-AZyobds</recordid><startdate>20141001</startdate><enddate>20141001</enddate><creator>Bastos, João A.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>885</scope><scope>8AO</scope><scope>8BJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ANIOZ</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRAZJ</scope><scope>FRNLG</scope><scope>F~G</scope><scope>JBE</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L.0</scope><scope>M0C</scope><scope>M1F</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20141001</creationdate><title>Ensemble Predictions of Recovery Rates</title><author>Bastos, João A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-e990197aed716796ab057a9b5cd990f32472dfb72f65013b12be9edf096e07183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Accuracy</topic><topic>Collateral</topic><topic>Committees</topic><topic>Credit risk</topic><topic>Datasets</topic><topic>Default</topic><topic>Economics and Finance</topic><topic>External debt</topic><topic>Finance</topic><topic>Financial Services</topic><topic>Forecasting</topic><topic>Forecasting techniques</topic><topic>Forecasts</topic><topic>Judgement</topic><topic>Loans</topic><topic>Macroeconomics/Monetary Economics//Financial Economics</topic><topic>Nonperforming loans</topic><topic>Regression analysis</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bastos, João A.</creatorcontrib><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Banking Information Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Accounting, Tax &amp; Banking Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>International Bibliography of the Social Sciences</collection><collection>Accounting, Tax &amp; Banking Collection (Alumni)</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ABI/INFORM Global</collection><collection>Banking Information Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of financial services research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bastos, João A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ensemble Predictions of Recovery Rates</atitle><jtitle>Journal of financial services research</jtitle><stitle>J Financ Serv Res</stitle><date>2014-10-01</date><risdate>2014</risdate><volume>46</volume><issue>2</issue><spage>177</spage><epage>193</epage><pages>177-193</pages><issn>0920-8550</issn><eissn>1573-0735</eissn><abstract>In many domains, the combined opinion of a committee of experts provides better decisions than the judgment of a single expert. This paper shows how to implement a successful ensemble strategy for predicting recovery rates on defaulted debts. Using data from Moody’s Ultimate Recovery Database, it is shown that committees of models derived from the same regression method present better forecasts of recovery rates than a single model. More accurate predictions are observed whether we forecast bond or loan recoveries, and across the entire range of actual recovery values.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10693-013-0165-3</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0920-8550
ispartof Journal of financial services research, 2014-10, Vol.46 (2), p.177-193
issn 0920-8550
1573-0735
language eng
recordid cdi_proquest_miscellaneous_1563984126
source Business Source Complete; Springer Nature - Complete Springer Journals
subjects Accuracy
Collateral
Committees
Credit risk
Datasets
Default
Economics and Finance
External debt
Finance
Financial Services
Forecasting
Forecasting techniques
Forecasts
Judgement
Loans
Macroeconomics/Monetary Economics//Financial Economics
Nonperforming loans
Regression analysis
Studies
title Ensemble Predictions of Recovery Rates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T05%3A39%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ensemble%20Predictions%20of%20Recovery%20Rates&rft.jtitle=Journal%20of%20financial%20services%20research&rft.au=Bastos,%20Jo%C3%A3o%20A.&rft.date=2014-10-01&rft.volume=46&rft.issue=2&rft.spage=177&rft.epage=193&rft.pages=177-193&rft.issn=0920-8550&rft.eissn=1573-0735&rft_id=info:doi/10.1007/s10693-013-0165-3&rft_dat=%3Cproquest_cross%3E3422955461%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1560011672&rft_id=info:pmid/&rfr_iscdi=true