Observation of the isotope effect in sub-kelvin reactions
Quantum phenomena in the translational motion of reactants, which are usually negligible at room temperature, can dominate reaction dynamics at low temperatures. In such cold conditions, even the weak centrifugal force is enough to create a potential barrier that keeps reactants separated. However,...
Gespeichert in:
Veröffentlicht in: | Nature chemistry 2014-04, Vol.6 (4), p.332-335 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 335 |
---|---|
container_issue | 4 |
container_start_page | 332 |
container_title | Nature chemistry |
container_volume | 6 |
creator | Lavert-Ofir, Etay Shagam, Yuval Henson, Alon B. Gersten, Sasha Kłos, Jacek Żuchowski, Piotr S. Narevicius, Julia Narevicius, Edvardas |
description | Quantum phenomena in the translational motion of reactants, which are usually negligible at room temperature, can dominate reaction dynamics at low temperatures. In such cold conditions, even the weak centrifugal force is enough to create a potential barrier that keeps reactants separated. However, reactions may still proceed through tunnelling because, at low temperatures, wave-like properties become important. At certain de Broglie wavelengths, the colliding particles can become trapped in long-lived metastable scattering states, leading to sharp increases in the total reaction rate. Here, we show that these metastable states are responsible for a dramatic, order-of-magnitude-strong, quantum kinetic isotope effect by measuring the absolute Penning ionization reaction rates between hydrogen isotopologues and metastable helium down to 0.01 K. We demonstrate that measurements of a single isotope are insufficient to constrain
ab initio
calculations, making the kinetic isotope effect in the cold regime necessary to remove ambiguity among possible potential energy surfaces.
In cold chemistry, quantum phenomena in reactants' translational motion lead to the temporary trapping of reactants in a collisional complex. It is now shown that this metastable complex is responsible for a dramatic quantum kinetic isotope effect as observed in Penning ionization reactions at low temperatures. |
doi_str_mv | 10.1038/nchem.1857 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1562672742</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1562672742</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-2b21d897993cab9b83bb52fd34a8b2d9232797e98bd42e1c8f32f033183668ac3</originalsourceid><addsrcrecordid>eNqN0MtKw0AUBuBBFKvVjQ8gATeipM79spTiDQrd6DpkJic2NZc6kxR8exNbi-jG1RyYj_9wfoTOCJ4QzPRN7RZQTYgWag8dESVEzBk3-7uZ4RE6DmGJsRSMyEM0olwKQjE5QmZuA_h12hZNHTV51C4gKkLTNiuIIM_BtVFRR6Gz8RuU6370kLoBhxN0kKdlgNPtO0Yv93fP08d4Nn94mt7OYsc0b2NqKcm0UcYwl1pjNbNW0DxjPNWWZoYyqowCo23GKRCnc0ZzzBjRTEqdOjZGl5vclW_eOwhtUhXBQVmmNTRdSIiQVCqqOP0HxYZjLTnp6cUvumw6X_eHJEQKoYTkalBXG-V8E4KHPFn5okr9R0JwMnSffHWfDN33-Hwb2dkKsh39LrsH1xsQ-q_6FfyPnX_jPgEN-IwE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1655756471</pqid></control><display><type>article</type><title>Observation of the isotope effect in sub-kelvin reactions</title><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Lavert-Ofir, Etay ; Shagam, Yuval ; Henson, Alon B. ; Gersten, Sasha ; Kłos, Jacek ; Żuchowski, Piotr S. ; Narevicius, Julia ; Narevicius, Edvardas</creator><creatorcontrib>Lavert-Ofir, Etay ; Shagam, Yuval ; Henson, Alon B. ; Gersten, Sasha ; Kłos, Jacek ; Żuchowski, Piotr S. ; Narevicius, Julia ; Narevicius, Edvardas</creatorcontrib><description>Quantum phenomena in the translational motion of reactants, which are usually negligible at room temperature, can dominate reaction dynamics at low temperatures. In such cold conditions, even the weak centrifugal force is enough to create a potential barrier that keeps reactants separated. However, reactions may still proceed through tunnelling because, at low temperatures, wave-like properties become important. At certain de Broglie wavelengths, the colliding particles can become trapped in long-lived metastable scattering states, leading to sharp increases in the total reaction rate. Here, we show that these metastable states are responsible for a dramatic, order-of-magnitude-strong, quantum kinetic isotope effect by measuring the absolute Penning ionization reaction rates between hydrogen isotopologues and metastable helium down to 0.01 K. We demonstrate that measurements of a single isotope are insufficient to constrain
ab initio
calculations, making the kinetic isotope effect in the cold regime necessary to remove ambiguity among possible potential energy surfaces.
In cold chemistry, quantum phenomena in reactants' translational motion lead to the temporary trapping of reactants in a collisional complex. It is now shown that this metastable complex is responsible for a dramatic quantum kinetic isotope effect as observed in Penning ionization reactions at low temperatures.</description><identifier>ISSN: 1755-4330</identifier><identifier>EISSN: 1755-4349</identifier><identifier>DOI: 10.1038/nchem.1857</identifier><identifier>PMID: 24651201</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>119/118 ; 140/58 ; 639/638/440/94 ; 639/638/440/947 ; 639/638/440/950 ; 639/638/563/758 ; Analytical Chemistry ; Biochemistry ; Chemistry ; Chemistry/Food Science ; Cold ; Helium ; Inorganic Chemistry ; Ionization ; Low temperature ; Organic Chemistry ; Physical Chemistry ; Potential energy ; Temperature ; Wavelengths</subject><ispartof>Nature chemistry, 2014-04, Vol.6 (4), p.332-335</ispartof><rights>Springer Nature Limited 2014</rights><rights>Copyright Nature Publishing Group Apr 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-2b21d897993cab9b83bb52fd34a8b2d9232797e98bd42e1c8f32f033183668ac3</citedby><cites>FETCH-LOGICAL-c384t-2b21d897993cab9b83bb52fd34a8b2d9232797e98bd42e1c8f32f033183668ac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24651201$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lavert-Ofir, Etay</creatorcontrib><creatorcontrib>Shagam, Yuval</creatorcontrib><creatorcontrib>Henson, Alon B.</creatorcontrib><creatorcontrib>Gersten, Sasha</creatorcontrib><creatorcontrib>Kłos, Jacek</creatorcontrib><creatorcontrib>Żuchowski, Piotr S.</creatorcontrib><creatorcontrib>Narevicius, Julia</creatorcontrib><creatorcontrib>Narevicius, Edvardas</creatorcontrib><title>Observation of the isotope effect in sub-kelvin reactions</title><title>Nature chemistry</title><addtitle>Nature Chem</addtitle><addtitle>Nat Chem</addtitle><description>Quantum phenomena in the translational motion of reactants, which are usually negligible at room temperature, can dominate reaction dynamics at low temperatures. In such cold conditions, even the weak centrifugal force is enough to create a potential barrier that keeps reactants separated. However, reactions may still proceed through tunnelling because, at low temperatures, wave-like properties become important. At certain de Broglie wavelengths, the colliding particles can become trapped in long-lived metastable scattering states, leading to sharp increases in the total reaction rate. Here, we show that these metastable states are responsible for a dramatic, order-of-magnitude-strong, quantum kinetic isotope effect by measuring the absolute Penning ionization reaction rates between hydrogen isotopologues and metastable helium down to 0.01 K. We demonstrate that measurements of a single isotope are insufficient to constrain
ab initio
calculations, making the kinetic isotope effect in the cold regime necessary to remove ambiguity among possible potential energy surfaces.
In cold chemistry, quantum phenomena in reactants' translational motion lead to the temporary trapping of reactants in a collisional complex. It is now shown that this metastable complex is responsible for a dramatic quantum kinetic isotope effect as observed in Penning ionization reactions at low temperatures.</description><subject>119/118</subject><subject>140/58</subject><subject>639/638/440/94</subject><subject>639/638/440/947</subject><subject>639/638/440/950</subject><subject>639/638/563/758</subject><subject>Analytical Chemistry</subject><subject>Biochemistry</subject><subject>Chemistry</subject><subject>Chemistry/Food Science</subject><subject>Cold</subject><subject>Helium</subject><subject>Inorganic Chemistry</subject><subject>Ionization</subject><subject>Low temperature</subject><subject>Organic Chemistry</subject><subject>Physical Chemistry</subject><subject>Potential energy</subject><subject>Temperature</subject><subject>Wavelengths</subject><issn>1755-4330</issn><issn>1755-4349</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqN0MtKw0AUBuBBFKvVjQ8gATeipM79spTiDQrd6DpkJic2NZc6kxR8exNbi-jG1RyYj_9wfoTOCJ4QzPRN7RZQTYgWag8dESVEzBk3-7uZ4RE6DmGJsRSMyEM0olwKQjE5QmZuA_h12hZNHTV51C4gKkLTNiuIIM_BtVFRR6Gz8RuU6370kLoBhxN0kKdlgNPtO0Yv93fP08d4Nn94mt7OYsc0b2NqKcm0UcYwl1pjNbNW0DxjPNWWZoYyqowCo23GKRCnc0ZzzBjRTEqdOjZGl5vclW_eOwhtUhXBQVmmNTRdSIiQVCqqOP0HxYZjLTnp6cUvumw6X_eHJEQKoYTkalBXG-V8E4KHPFn5okr9R0JwMnSffHWfDN33-Hwb2dkKsh39LrsH1xsQ-q_6FfyPnX_jPgEN-IwE</recordid><startdate>20140401</startdate><enddate>20140401</enddate><creator>Lavert-Ofir, Etay</creator><creator>Shagam, Yuval</creator><creator>Henson, Alon B.</creator><creator>Gersten, Sasha</creator><creator>Kłos, Jacek</creator><creator>Żuchowski, Piotr S.</creator><creator>Narevicius, Julia</creator><creator>Narevicius, Edvardas</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope></search><sort><creationdate>20140401</creationdate><title>Observation of the isotope effect in sub-kelvin reactions</title><author>Lavert-Ofir, Etay ; Shagam, Yuval ; Henson, Alon B. ; Gersten, Sasha ; Kłos, Jacek ; Żuchowski, Piotr S. ; Narevicius, Julia ; Narevicius, Edvardas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-2b21d897993cab9b83bb52fd34a8b2d9232797e98bd42e1c8f32f033183668ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>119/118</topic><topic>140/58</topic><topic>639/638/440/94</topic><topic>639/638/440/947</topic><topic>639/638/440/950</topic><topic>639/638/563/758</topic><topic>Analytical Chemistry</topic><topic>Biochemistry</topic><topic>Chemistry</topic><topic>Chemistry/Food Science</topic><topic>Cold</topic><topic>Helium</topic><topic>Inorganic Chemistry</topic><topic>Ionization</topic><topic>Low temperature</topic><topic>Organic Chemistry</topic><topic>Physical Chemistry</topic><topic>Potential energy</topic><topic>Temperature</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lavert-Ofir, Etay</creatorcontrib><creatorcontrib>Shagam, Yuval</creatorcontrib><creatorcontrib>Henson, Alon B.</creatorcontrib><creatorcontrib>Gersten, Sasha</creatorcontrib><creatorcontrib>Kłos, Jacek</creatorcontrib><creatorcontrib>Żuchowski, Piotr S.</creatorcontrib><creatorcontrib>Narevicius, Julia</creatorcontrib><creatorcontrib>Narevicius, Edvardas</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Chemoreception Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><jtitle>Nature chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lavert-Ofir, Etay</au><au>Shagam, Yuval</au><au>Henson, Alon B.</au><au>Gersten, Sasha</au><au>Kłos, Jacek</au><au>Żuchowski, Piotr S.</au><au>Narevicius, Julia</au><au>Narevicius, Edvardas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Observation of the isotope effect in sub-kelvin reactions</atitle><jtitle>Nature chemistry</jtitle><stitle>Nature Chem</stitle><addtitle>Nat Chem</addtitle><date>2014-04-01</date><risdate>2014</risdate><volume>6</volume><issue>4</issue><spage>332</spage><epage>335</epage><pages>332-335</pages><issn>1755-4330</issn><eissn>1755-4349</eissn><abstract>Quantum phenomena in the translational motion of reactants, which are usually negligible at room temperature, can dominate reaction dynamics at low temperatures. In such cold conditions, even the weak centrifugal force is enough to create a potential barrier that keeps reactants separated. However, reactions may still proceed through tunnelling because, at low temperatures, wave-like properties become important. At certain de Broglie wavelengths, the colliding particles can become trapped in long-lived metastable scattering states, leading to sharp increases in the total reaction rate. Here, we show that these metastable states are responsible for a dramatic, order-of-magnitude-strong, quantum kinetic isotope effect by measuring the absolute Penning ionization reaction rates between hydrogen isotopologues and metastable helium down to 0.01 K. We demonstrate that measurements of a single isotope are insufficient to constrain
ab initio
calculations, making the kinetic isotope effect in the cold regime necessary to remove ambiguity among possible potential energy surfaces.
In cold chemistry, quantum phenomena in reactants' translational motion lead to the temporary trapping of reactants in a collisional complex. It is now shown that this metastable complex is responsible for a dramatic quantum kinetic isotope effect as observed in Penning ionization reactions at low temperatures.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>24651201</pmid><doi>10.1038/nchem.1857</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1755-4330 |
ispartof | Nature chemistry, 2014-04, Vol.6 (4), p.332-335 |
issn | 1755-4330 1755-4349 |
language | eng |
recordid | cdi_proquest_miscellaneous_1562672742 |
source | Nature; Alma/SFX Local Collection |
subjects | 119/118 140/58 639/638/440/94 639/638/440/947 639/638/440/950 639/638/563/758 Analytical Chemistry Biochemistry Chemistry Chemistry/Food Science Cold Helium Inorganic Chemistry Ionization Low temperature Organic Chemistry Physical Chemistry Potential energy Temperature Wavelengths |
title | Observation of the isotope effect in sub-kelvin reactions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T04%3A19%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Observation%20of%20the%20isotope%20effect%20in%20sub-kelvin%20reactions&rft.jtitle=Nature%20chemistry&rft.au=Lavert-Ofir,%20Etay&rft.date=2014-04-01&rft.volume=6&rft.issue=4&rft.spage=332&rft.epage=335&rft.pages=332-335&rft.issn=1755-4330&rft.eissn=1755-4349&rft_id=info:doi/10.1038/nchem.1857&rft_dat=%3Cproquest_cross%3E1562672742%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1655756471&rft_id=info:pmid/24651201&rfr_iscdi=true |