Observation of the isotope effect in sub-kelvin reactions

Quantum phenomena in the translational motion of reactants, which are usually negligible at room temperature, can dominate reaction dynamics at low temperatures. In such cold conditions, even the weak centrifugal force is enough to create a potential barrier that keeps reactants separated. However,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature chemistry 2014-04, Vol.6 (4), p.332-335
Hauptverfasser: Lavert-Ofir, Etay, Shagam, Yuval, Henson, Alon B., Gersten, Sasha, Kłos, Jacek, Żuchowski, Piotr S., Narevicius, Julia, Narevicius, Edvardas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 335
container_issue 4
container_start_page 332
container_title Nature chemistry
container_volume 6
creator Lavert-Ofir, Etay
Shagam, Yuval
Henson, Alon B.
Gersten, Sasha
Kłos, Jacek
Żuchowski, Piotr S.
Narevicius, Julia
Narevicius, Edvardas
description Quantum phenomena in the translational motion of reactants, which are usually negligible at room temperature, can dominate reaction dynamics at low temperatures. In such cold conditions, even the weak centrifugal force is enough to create a potential barrier that keeps reactants separated. However, reactions may still proceed through tunnelling because, at low temperatures, wave-like properties become important. At certain de Broglie wavelengths, the colliding particles can become trapped in long-lived metastable scattering states, leading to sharp increases in the total reaction rate. Here, we show that these metastable states are responsible for a dramatic, order-of-magnitude-strong, quantum kinetic isotope effect by measuring the absolute Penning ionization reaction rates between hydrogen isotopologues and metastable helium down to 0.01 K. We demonstrate that measurements of a single isotope are insufficient to constrain ab initio calculations, making the kinetic isotope effect in the cold regime necessary to remove ambiguity among possible potential energy surfaces. In cold chemistry, quantum phenomena in reactants' translational motion lead to the temporary trapping of reactants in a collisional complex. It is now shown that this metastable complex is responsible for a dramatic quantum kinetic isotope effect as observed in Penning ionization reactions at low temperatures.
doi_str_mv 10.1038/nchem.1857
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1562672742</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1562672742</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-2b21d897993cab9b83bb52fd34a8b2d9232797e98bd42e1c8f32f033183668ac3</originalsourceid><addsrcrecordid>eNqN0MtKw0AUBuBBFKvVjQ8gATeipM79spTiDQrd6DpkJic2NZc6kxR8exNbi-jG1RyYj_9wfoTOCJ4QzPRN7RZQTYgWag8dESVEzBk3-7uZ4RE6DmGJsRSMyEM0olwKQjE5QmZuA_h12hZNHTV51C4gKkLTNiuIIM_BtVFRR6Gz8RuU6370kLoBhxN0kKdlgNPtO0Yv93fP08d4Nn94mt7OYsc0b2NqKcm0UcYwl1pjNbNW0DxjPNWWZoYyqowCo23GKRCnc0ZzzBjRTEqdOjZGl5vclW_eOwhtUhXBQVmmNTRdSIiQVCqqOP0HxYZjLTnp6cUvumw6X_eHJEQKoYTkalBXG-V8E4KHPFn5okr9R0JwMnSffHWfDN33-Hwb2dkKsh39LrsH1xsQ-q_6FfyPnX_jPgEN-IwE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1655756471</pqid></control><display><type>article</type><title>Observation of the isotope effect in sub-kelvin reactions</title><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Lavert-Ofir, Etay ; Shagam, Yuval ; Henson, Alon B. ; Gersten, Sasha ; Kłos, Jacek ; Żuchowski, Piotr S. ; Narevicius, Julia ; Narevicius, Edvardas</creator><creatorcontrib>Lavert-Ofir, Etay ; Shagam, Yuval ; Henson, Alon B. ; Gersten, Sasha ; Kłos, Jacek ; Żuchowski, Piotr S. ; Narevicius, Julia ; Narevicius, Edvardas</creatorcontrib><description>Quantum phenomena in the translational motion of reactants, which are usually negligible at room temperature, can dominate reaction dynamics at low temperatures. In such cold conditions, even the weak centrifugal force is enough to create a potential barrier that keeps reactants separated. However, reactions may still proceed through tunnelling because, at low temperatures, wave-like properties become important. At certain de Broglie wavelengths, the colliding particles can become trapped in long-lived metastable scattering states, leading to sharp increases in the total reaction rate. Here, we show that these metastable states are responsible for a dramatic, order-of-magnitude-strong, quantum kinetic isotope effect by measuring the absolute Penning ionization reaction rates between hydrogen isotopologues and metastable helium down to 0.01 K. We demonstrate that measurements of a single isotope are insufficient to constrain ab initio calculations, making the kinetic isotope effect in the cold regime necessary to remove ambiguity among possible potential energy surfaces. In cold chemistry, quantum phenomena in reactants' translational motion lead to the temporary trapping of reactants in a collisional complex. It is now shown that this metastable complex is responsible for a dramatic quantum kinetic isotope effect as observed in Penning ionization reactions at low temperatures.</description><identifier>ISSN: 1755-4330</identifier><identifier>EISSN: 1755-4349</identifier><identifier>DOI: 10.1038/nchem.1857</identifier><identifier>PMID: 24651201</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>119/118 ; 140/58 ; 639/638/440/94 ; 639/638/440/947 ; 639/638/440/950 ; 639/638/563/758 ; Analytical Chemistry ; Biochemistry ; Chemistry ; Chemistry/Food Science ; Cold ; Helium ; Inorganic Chemistry ; Ionization ; Low temperature ; Organic Chemistry ; Physical Chemistry ; Potential energy ; Temperature ; Wavelengths</subject><ispartof>Nature chemistry, 2014-04, Vol.6 (4), p.332-335</ispartof><rights>Springer Nature Limited 2014</rights><rights>Copyright Nature Publishing Group Apr 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-2b21d897993cab9b83bb52fd34a8b2d9232797e98bd42e1c8f32f033183668ac3</citedby><cites>FETCH-LOGICAL-c384t-2b21d897993cab9b83bb52fd34a8b2d9232797e98bd42e1c8f32f033183668ac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24651201$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lavert-Ofir, Etay</creatorcontrib><creatorcontrib>Shagam, Yuval</creatorcontrib><creatorcontrib>Henson, Alon B.</creatorcontrib><creatorcontrib>Gersten, Sasha</creatorcontrib><creatorcontrib>Kłos, Jacek</creatorcontrib><creatorcontrib>Żuchowski, Piotr S.</creatorcontrib><creatorcontrib>Narevicius, Julia</creatorcontrib><creatorcontrib>Narevicius, Edvardas</creatorcontrib><title>Observation of the isotope effect in sub-kelvin reactions</title><title>Nature chemistry</title><addtitle>Nature Chem</addtitle><addtitle>Nat Chem</addtitle><description>Quantum phenomena in the translational motion of reactants, which are usually negligible at room temperature, can dominate reaction dynamics at low temperatures. In such cold conditions, even the weak centrifugal force is enough to create a potential barrier that keeps reactants separated. However, reactions may still proceed through tunnelling because, at low temperatures, wave-like properties become important. At certain de Broglie wavelengths, the colliding particles can become trapped in long-lived metastable scattering states, leading to sharp increases in the total reaction rate. Here, we show that these metastable states are responsible for a dramatic, order-of-magnitude-strong, quantum kinetic isotope effect by measuring the absolute Penning ionization reaction rates between hydrogen isotopologues and metastable helium down to 0.01 K. We demonstrate that measurements of a single isotope are insufficient to constrain ab initio calculations, making the kinetic isotope effect in the cold regime necessary to remove ambiguity among possible potential energy surfaces. In cold chemistry, quantum phenomena in reactants' translational motion lead to the temporary trapping of reactants in a collisional complex. It is now shown that this metastable complex is responsible for a dramatic quantum kinetic isotope effect as observed in Penning ionization reactions at low temperatures.</description><subject>119/118</subject><subject>140/58</subject><subject>639/638/440/94</subject><subject>639/638/440/947</subject><subject>639/638/440/950</subject><subject>639/638/563/758</subject><subject>Analytical Chemistry</subject><subject>Biochemistry</subject><subject>Chemistry</subject><subject>Chemistry/Food Science</subject><subject>Cold</subject><subject>Helium</subject><subject>Inorganic Chemistry</subject><subject>Ionization</subject><subject>Low temperature</subject><subject>Organic Chemistry</subject><subject>Physical Chemistry</subject><subject>Potential energy</subject><subject>Temperature</subject><subject>Wavelengths</subject><issn>1755-4330</issn><issn>1755-4349</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqN0MtKw0AUBuBBFKvVjQ8gATeipM79spTiDQrd6DpkJic2NZc6kxR8exNbi-jG1RyYj_9wfoTOCJ4QzPRN7RZQTYgWag8dESVEzBk3-7uZ4RE6DmGJsRSMyEM0olwKQjE5QmZuA_h12hZNHTV51C4gKkLTNiuIIM_BtVFRR6Gz8RuU6370kLoBhxN0kKdlgNPtO0Yv93fP08d4Nn94mt7OYsc0b2NqKcm0UcYwl1pjNbNW0DxjPNWWZoYyqowCo23GKRCnc0ZzzBjRTEqdOjZGl5vclW_eOwhtUhXBQVmmNTRdSIiQVCqqOP0HxYZjLTnp6cUvumw6X_eHJEQKoYTkalBXG-V8E4KHPFn5okr9R0JwMnSffHWfDN33-Hwb2dkKsh39LrsH1xsQ-q_6FfyPnX_jPgEN-IwE</recordid><startdate>20140401</startdate><enddate>20140401</enddate><creator>Lavert-Ofir, Etay</creator><creator>Shagam, Yuval</creator><creator>Henson, Alon B.</creator><creator>Gersten, Sasha</creator><creator>Kłos, Jacek</creator><creator>Żuchowski, Piotr S.</creator><creator>Narevicius, Julia</creator><creator>Narevicius, Edvardas</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope></search><sort><creationdate>20140401</creationdate><title>Observation of the isotope effect in sub-kelvin reactions</title><author>Lavert-Ofir, Etay ; Shagam, Yuval ; Henson, Alon B. ; Gersten, Sasha ; Kłos, Jacek ; Żuchowski, Piotr S. ; Narevicius, Julia ; Narevicius, Edvardas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-2b21d897993cab9b83bb52fd34a8b2d9232797e98bd42e1c8f32f033183668ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>119/118</topic><topic>140/58</topic><topic>639/638/440/94</topic><topic>639/638/440/947</topic><topic>639/638/440/950</topic><topic>639/638/563/758</topic><topic>Analytical Chemistry</topic><topic>Biochemistry</topic><topic>Chemistry</topic><topic>Chemistry/Food Science</topic><topic>Cold</topic><topic>Helium</topic><topic>Inorganic Chemistry</topic><topic>Ionization</topic><topic>Low temperature</topic><topic>Organic Chemistry</topic><topic>Physical Chemistry</topic><topic>Potential energy</topic><topic>Temperature</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lavert-Ofir, Etay</creatorcontrib><creatorcontrib>Shagam, Yuval</creatorcontrib><creatorcontrib>Henson, Alon B.</creatorcontrib><creatorcontrib>Gersten, Sasha</creatorcontrib><creatorcontrib>Kłos, Jacek</creatorcontrib><creatorcontrib>Żuchowski, Piotr S.</creatorcontrib><creatorcontrib>Narevicius, Julia</creatorcontrib><creatorcontrib>Narevicius, Edvardas</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Chemoreception Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><jtitle>Nature chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lavert-Ofir, Etay</au><au>Shagam, Yuval</au><au>Henson, Alon B.</au><au>Gersten, Sasha</au><au>Kłos, Jacek</au><au>Żuchowski, Piotr S.</au><au>Narevicius, Julia</au><au>Narevicius, Edvardas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Observation of the isotope effect in sub-kelvin reactions</atitle><jtitle>Nature chemistry</jtitle><stitle>Nature Chem</stitle><addtitle>Nat Chem</addtitle><date>2014-04-01</date><risdate>2014</risdate><volume>6</volume><issue>4</issue><spage>332</spage><epage>335</epage><pages>332-335</pages><issn>1755-4330</issn><eissn>1755-4349</eissn><abstract>Quantum phenomena in the translational motion of reactants, which are usually negligible at room temperature, can dominate reaction dynamics at low temperatures. In such cold conditions, even the weak centrifugal force is enough to create a potential barrier that keeps reactants separated. However, reactions may still proceed through tunnelling because, at low temperatures, wave-like properties become important. At certain de Broglie wavelengths, the colliding particles can become trapped in long-lived metastable scattering states, leading to sharp increases in the total reaction rate. Here, we show that these metastable states are responsible for a dramatic, order-of-magnitude-strong, quantum kinetic isotope effect by measuring the absolute Penning ionization reaction rates between hydrogen isotopologues and metastable helium down to 0.01 K. We demonstrate that measurements of a single isotope are insufficient to constrain ab initio calculations, making the kinetic isotope effect in the cold regime necessary to remove ambiguity among possible potential energy surfaces. In cold chemistry, quantum phenomena in reactants' translational motion lead to the temporary trapping of reactants in a collisional complex. It is now shown that this metastable complex is responsible for a dramatic quantum kinetic isotope effect as observed in Penning ionization reactions at low temperatures.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>24651201</pmid><doi>10.1038/nchem.1857</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1755-4330
ispartof Nature chemistry, 2014-04, Vol.6 (4), p.332-335
issn 1755-4330
1755-4349
language eng
recordid cdi_proquest_miscellaneous_1562672742
source Nature; Alma/SFX Local Collection
subjects 119/118
140/58
639/638/440/94
639/638/440/947
639/638/440/950
639/638/563/758
Analytical Chemistry
Biochemistry
Chemistry
Chemistry/Food Science
Cold
Helium
Inorganic Chemistry
Ionization
Low temperature
Organic Chemistry
Physical Chemistry
Potential energy
Temperature
Wavelengths
title Observation of the isotope effect in sub-kelvin reactions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T04%3A19%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Observation%20of%20the%20isotope%20effect%20in%20sub-kelvin%20reactions&rft.jtitle=Nature%20chemistry&rft.au=Lavert-Ofir,%20Etay&rft.date=2014-04-01&rft.volume=6&rft.issue=4&rft.spage=332&rft.epage=335&rft.pages=332-335&rft.issn=1755-4330&rft.eissn=1755-4349&rft_id=info:doi/10.1038/nchem.1857&rft_dat=%3Cproquest_cross%3E1562672742%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1655756471&rft_id=info:pmid/24651201&rfr_iscdi=true