β-receptor antagonist treatment prevents activation of cell death signaling in the diabetic heart independent of its metabolic actions

We have previously shown that metoprolol improves function in the diabetic heart, associated with inhibition of fatty acid oxidation and a shift towards protein kinase B signaling. The aim of this study was to determine the relative importance of these metabolic and signaling effects to the preventi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of pharmacology 2011-04, Vol.657 (1), p.117-125
Hauptverfasser: Sharma, Vijay, Sharma, Arpeeta, Saran, Varun, Bernatchez, Pascal N., Allard, Michael F., McNeill, John H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 125
container_issue 1
container_start_page 117
container_title European journal of pharmacology
container_volume 657
creator Sharma, Vijay
Sharma, Arpeeta
Saran, Varun
Bernatchez, Pascal N.
Allard, Michael F.
McNeill, John H.
description We have previously shown that metoprolol improves function in the diabetic heart, associated with inhibition of fatty acid oxidation and a shift towards protein kinase B signaling. The aim of this study was to determine the relative importance of these metabolic and signaling effects to the prevention of cellular damage. Diabetes was induced in male Wistar rats by a single IV injection of 60 mg/kg streptozotocin, and treated groups received 15 mg/kg/day metoprolol delivered subcutaneously by osmotic pumps. Echocardiography was performed 6 weeks after streptozotocin injection, and the hearts immediately excised for histological and biochemical measurements of lipotoxicity, apoptosis, signaling and caveolin/caspase interactions. Metoprolol improved stroke volume and cardiac output, associated with attenuation of TUNEL staining and a more modest attenuation of caspase-3; however, the positive TUNEL staining was not associated with an increase in apoptosis or cell regeneration markers. Metoprolol inhibited CPT-1 without affecting CD36 translocation, associated with increased accumulation of triglycerides and long chain acyl CoA in the cytoplasm, and no effect on oxidative stress. Metoprolol induced a shift from protein kinase A to protein kinase B-mediated signaling, associated with a shift in the phosphorylation patterns of BCl-2 and Bad which favored BCl-2 action. Metoprolol also increased the interaction of activated caspase-3 with caveolins 1 and 3 outside caveolae. The actions of metoprolol on fatty acid oxidation do not prevent lipotoxicity; its beneficial effect is more likely to be due to pro-survival signaling and sequestration of activated caspase-3 by caveolins.
doi_str_mv 10.1016/j.ejphar.2011.01.044
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1562670720</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0014299911001026</els_id><sourcerecordid>1562670720</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-b901d5efad2596d4f429ada2b86a13364fb1aef1eef97e89b463d7b8f0cfde543</originalsourceid><addsrcrecordid>eNp9kd2KFDEQhRtR3HH1DURzI3jTY5JO_-RGWBb_YMEL3etQnVRmMvQkbZIZ8Al8Hx_EZzJNj3onFCkIX52T1Kmq54xuGWXdm8MWD_Me4pZTxra0lBAPqg0belnTnvGH1YZSJmoupbyqnqR0oJS2krePqyvOuOxo12yqH79-1hE1zjlEAj7DLniXMskRIR_RZzJHPJeeCOjszpBd8CRYonGaiCnQniS38zA5vyPOk7xHYhyMmJ0me4SYy63BGctR1MqkK1pHzDCGqSCLavDpafXIwpTw2aVfV_fv3329_Vjfff7w6fbmrtZCDLkeJWWmRQuGt7IzwgouwQAfhw5Y03TCjgzQMkQrexzkKLrG9ONgqbYGW9FcV69X3TmGbydMWR1dWv4CHsMpKdZ2vOtpz2lBxYrqGFKKaNUc3RHid8WoWiJQB7VGoJYIFC0lFocXF4fTeETzd-jPzgvw6gJA0jDZCF679I9rZNe2vC3cy5WzEBTsYmHuvxSntuQoKB0W4u1KYNnY2WFUSTv0Go0rmWZlgvv_W38DRvW0Aw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1562670720</pqid></control><display><type>article</type><title>β-receptor antagonist treatment prevents activation of cell death signaling in the diabetic heart independent of its metabolic actions</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Sharma, Vijay ; Sharma, Arpeeta ; Saran, Varun ; Bernatchez, Pascal N. ; Allard, Michael F. ; McNeill, John H.</creator><creatorcontrib>Sharma, Vijay ; Sharma, Arpeeta ; Saran, Varun ; Bernatchez, Pascal N. ; Allard, Michael F. ; McNeill, John H.</creatorcontrib><description>We have previously shown that metoprolol improves function in the diabetic heart, associated with inhibition of fatty acid oxidation and a shift towards protein kinase B signaling. The aim of this study was to determine the relative importance of these metabolic and signaling effects to the prevention of cellular damage. Diabetes was induced in male Wistar rats by a single IV injection of 60 mg/kg streptozotocin, and treated groups received 15 mg/kg/day metoprolol delivered subcutaneously by osmotic pumps. Echocardiography was performed 6 weeks after streptozotocin injection, and the hearts immediately excised for histological and biochemical measurements of lipotoxicity, apoptosis, signaling and caveolin/caspase interactions. Metoprolol improved stroke volume and cardiac output, associated with attenuation of TUNEL staining and a more modest attenuation of caspase-3; however, the positive TUNEL staining was not associated with an increase in apoptosis or cell regeneration markers. Metoprolol inhibited CPT-1 without affecting CD36 translocation, associated with increased accumulation of triglycerides and long chain acyl CoA in the cytoplasm, and no effect on oxidative stress. Metoprolol induced a shift from protein kinase A to protein kinase B-mediated signaling, associated with a shift in the phosphorylation patterns of BCl-2 and Bad which favored BCl-2 action. Metoprolol also increased the interaction of activated caspase-3 with caveolins 1 and 3 outside caveolae. The actions of metoprolol on fatty acid oxidation do not prevent lipotoxicity; its beneficial effect is more likely to be due to pro-survival signaling and sequestration of activated caspase-3 by caveolins.</description><identifier>ISSN: 0014-2999</identifier><identifier>EISSN: 1879-0712</identifier><identifier>DOI: 10.1016/j.ejphar.2011.01.044</identifier><identifier>PMID: 21296063</identifier><identifier>CODEN: EJPHAZ</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>acyl coenzyme A ; Adrenergic beta-Antagonists - pharmacology ; Animals ; antagonists ; apoptosis ; bcl-Associated Death Protein - metabolism ; Biological and medical sciences ; cAMP-dependent protein kinase ; Cardiac metabolism ; cardiac output ; Cardiology. Vascular system ; Caspase 3 - metabolism ; caspase-3 ; Caveolins - metabolism ; Cell death ; Cell Death - drug effects ; Cyclic AMP-Dependent Protein Kinases - metabolism ; cytoplasm ; Diabetes ; Diabetes Mellitus, Experimental - metabolism ; Diabetes Mellitus, Experimental - pathology ; Diabetes. Impaired glucose tolerance ; echocardiography ; Endocrine pancreas. Apud cells (diseases) ; Endocrinopathies ; Etiopathogenesis. Screening. Investigations. Target tissue resistance ; fatty acids ; Fatty Acids - metabolism ; Fatty Acids - toxicity ; Fibrosis - metabolism ; Heart ; Heart - drug effects ; Heart failure ; Heart failure, cardiogenic pulmonary edema, cardiac enlargement ; intravenous injection ; long chain triacylglycerols ; Male ; Medical sciences ; Metoprolol - pharmacology ; Myocardium - metabolism ; Myocardium - pathology ; oxidation ; Oxidation-Reduction - drug effects ; Oxidative stress ; Oxidative Stress - drug effects ; pharmacology ; Pharmacology. Drug treatments ; phosphorylation ; Phosphorylation - drug effects ; Proto-Oncogene Proteins c-akt - metabolism ; Proto-Oncogene Proteins c-bcl-2 - metabolism ; pumps ; Rats ; Rats, Wistar ; Receptors, Adrenergic, beta - metabolism ; Signal Transduction - drug effects ; streptozotocin ; β-receptor antagonist</subject><ispartof>European journal of pharmacology, 2011-04, Vol.657 (1), p.117-125</ispartof><rights>2011 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2011 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-b901d5efad2596d4f429ada2b86a13364fb1aef1eef97e89b463d7b8f0cfde543</citedby><cites>FETCH-LOGICAL-c448t-b901d5efad2596d4f429ada2b86a13364fb1aef1eef97e89b463d7b8f0cfde543</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ejphar.2011.01.044$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23965525$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21296063$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sharma, Vijay</creatorcontrib><creatorcontrib>Sharma, Arpeeta</creatorcontrib><creatorcontrib>Saran, Varun</creatorcontrib><creatorcontrib>Bernatchez, Pascal N.</creatorcontrib><creatorcontrib>Allard, Michael F.</creatorcontrib><creatorcontrib>McNeill, John H.</creatorcontrib><title>β-receptor antagonist treatment prevents activation of cell death signaling in the diabetic heart independent of its metabolic actions</title><title>European journal of pharmacology</title><addtitle>Eur J Pharmacol</addtitle><description>We have previously shown that metoprolol improves function in the diabetic heart, associated with inhibition of fatty acid oxidation and a shift towards protein kinase B signaling. The aim of this study was to determine the relative importance of these metabolic and signaling effects to the prevention of cellular damage. Diabetes was induced in male Wistar rats by a single IV injection of 60 mg/kg streptozotocin, and treated groups received 15 mg/kg/day metoprolol delivered subcutaneously by osmotic pumps. Echocardiography was performed 6 weeks after streptozotocin injection, and the hearts immediately excised for histological and biochemical measurements of lipotoxicity, apoptosis, signaling and caveolin/caspase interactions. Metoprolol improved stroke volume and cardiac output, associated with attenuation of TUNEL staining and a more modest attenuation of caspase-3; however, the positive TUNEL staining was not associated with an increase in apoptosis or cell regeneration markers. Metoprolol inhibited CPT-1 without affecting CD36 translocation, associated with increased accumulation of triglycerides and long chain acyl CoA in the cytoplasm, and no effect on oxidative stress. Metoprolol induced a shift from protein kinase A to protein kinase B-mediated signaling, associated with a shift in the phosphorylation patterns of BCl-2 and Bad which favored BCl-2 action. Metoprolol also increased the interaction of activated caspase-3 with caveolins 1 and 3 outside caveolae. The actions of metoprolol on fatty acid oxidation do not prevent lipotoxicity; its beneficial effect is more likely to be due to pro-survival signaling and sequestration of activated caspase-3 by caveolins.</description><subject>acyl coenzyme A</subject><subject>Adrenergic beta-Antagonists - pharmacology</subject><subject>Animals</subject><subject>antagonists</subject><subject>apoptosis</subject><subject>bcl-Associated Death Protein - metabolism</subject><subject>Biological and medical sciences</subject><subject>cAMP-dependent protein kinase</subject><subject>Cardiac metabolism</subject><subject>cardiac output</subject><subject>Cardiology. Vascular system</subject><subject>Caspase 3 - metabolism</subject><subject>caspase-3</subject><subject>Caveolins - metabolism</subject><subject>Cell death</subject><subject>Cell Death - drug effects</subject><subject>Cyclic AMP-Dependent Protein Kinases - metabolism</subject><subject>cytoplasm</subject><subject>Diabetes</subject><subject>Diabetes Mellitus, Experimental - metabolism</subject><subject>Diabetes Mellitus, Experimental - pathology</subject><subject>Diabetes. Impaired glucose tolerance</subject><subject>echocardiography</subject><subject>Endocrine pancreas. Apud cells (diseases)</subject><subject>Endocrinopathies</subject><subject>Etiopathogenesis. Screening. Investigations. Target tissue resistance</subject><subject>fatty acids</subject><subject>Fatty Acids - metabolism</subject><subject>Fatty Acids - toxicity</subject><subject>Fibrosis - metabolism</subject><subject>Heart</subject><subject>Heart - drug effects</subject><subject>Heart failure</subject><subject>Heart failure, cardiogenic pulmonary edema, cardiac enlargement</subject><subject>intravenous injection</subject><subject>long chain triacylglycerols</subject><subject>Male</subject><subject>Medical sciences</subject><subject>Metoprolol - pharmacology</subject><subject>Myocardium - metabolism</subject><subject>Myocardium - pathology</subject><subject>oxidation</subject><subject>Oxidation-Reduction - drug effects</subject><subject>Oxidative stress</subject><subject>Oxidative Stress - drug effects</subject><subject>pharmacology</subject><subject>Pharmacology. Drug treatments</subject><subject>phosphorylation</subject><subject>Phosphorylation - drug effects</subject><subject>Proto-Oncogene Proteins c-akt - metabolism</subject><subject>Proto-Oncogene Proteins c-bcl-2 - metabolism</subject><subject>pumps</subject><subject>Rats</subject><subject>Rats, Wistar</subject><subject>Receptors, Adrenergic, beta - metabolism</subject><subject>Signal Transduction - drug effects</subject><subject>streptozotocin</subject><subject>β-receptor antagonist</subject><issn>0014-2999</issn><issn>1879-0712</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kd2KFDEQhRtR3HH1DURzI3jTY5JO_-RGWBb_YMEL3etQnVRmMvQkbZIZ8Al8Hx_EZzJNj3onFCkIX52T1Kmq54xuGWXdm8MWD_Me4pZTxra0lBAPqg0belnTnvGH1YZSJmoupbyqnqR0oJS2krePqyvOuOxo12yqH79-1hE1zjlEAj7DLniXMskRIR_RZzJHPJeeCOjszpBd8CRYonGaiCnQniS38zA5vyPOk7xHYhyMmJ0me4SYy63BGctR1MqkK1pHzDCGqSCLavDpafXIwpTw2aVfV_fv3329_Vjfff7w6fbmrtZCDLkeJWWmRQuGt7IzwgouwQAfhw5Y03TCjgzQMkQrexzkKLrG9ONgqbYGW9FcV69X3TmGbydMWR1dWv4CHsMpKdZ2vOtpz2lBxYrqGFKKaNUc3RHid8WoWiJQB7VGoJYIFC0lFocXF4fTeETzd-jPzgvw6gJA0jDZCF679I9rZNe2vC3cy5WzEBTsYmHuvxSntuQoKB0W4u1KYNnY2WFUSTv0Go0rmWZlgvv_W38DRvW0Aw</recordid><startdate>20110425</startdate><enddate>20110425</enddate><creator>Sharma, Vijay</creator><creator>Sharma, Arpeeta</creator><creator>Saran, Varun</creator><creator>Bernatchez, Pascal N.</creator><creator>Allard, Michael F.</creator><creator>McNeill, John H.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U7</scope><scope>C1K</scope></search><sort><creationdate>20110425</creationdate><title>β-receptor antagonist treatment prevents activation of cell death signaling in the diabetic heart independent of its metabolic actions</title><author>Sharma, Vijay ; Sharma, Arpeeta ; Saran, Varun ; Bernatchez, Pascal N. ; Allard, Michael F. ; McNeill, John H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-b901d5efad2596d4f429ada2b86a13364fb1aef1eef97e89b463d7b8f0cfde543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>acyl coenzyme A</topic><topic>Adrenergic beta-Antagonists - pharmacology</topic><topic>Animals</topic><topic>antagonists</topic><topic>apoptosis</topic><topic>bcl-Associated Death Protein - metabolism</topic><topic>Biological and medical sciences</topic><topic>cAMP-dependent protein kinase</topic><topic>Cardiac metabolism</topic><topic>cardiac output</topic><topic>Cardiology. Vascular system</topic><topic>Caspase 3 - metabolism</topic><topic>caspase-3</topic><topic>Caveolins - metabolism</topic><topic>Cell death</topic><topic>Cell Death - drug effects</topic><topic>Cyclic AMP-Dependent Protein Kinases - metabolism</topic><topic>cytoplasm</topic><topic>Diabetes</topic><topic>Diabetes Mellitus, Experimental - metabolism</topic><topic>Diabetes Mellitus, Experimental - pathology</topic><topic>Diabetes. Impaired glucose tolerance</topic><topic>echocardiography</topic><topic>Endocrine pancreas. Apud cells (diseases)</topic><topic>Endocrinopathies</topic><topic>Etiopathogenesis. Screening. Investigations. Target tissue resistance</topic><topic>fatty acids</topic><topic>Fatty Acids - metabolism</topic><topic>Fatty Acids - toxicity</topic><topic>Fibrosis - metabolism</topic><topic>Heart</topic><topic>Heart - drug effects</topic><topic>Heart failure</topic><topic>Heart failure, cardiogenic pulmonary edema, cardiac enlargement</topic><topic>intravenous injection</topic><topic>long chain triacylglycerols</topic><topic>Male</topic><topic>Medical sciences</topic><topic>Metoprolol - pharmacology</topic><topic>Myocardium - metabolism</topic><topic>Myocardium - pathology</topic><topic>oxidation</topic><topic>Oxidation-Reduction - drug effects</topic><topic>Oxidative stress</topic><topic>Oxidative Stress - drug effects</topic><topic>pharmacology</topic><topic>Pharmacology. Drug treatments</topic><topic>phosphorylation</topic><topic>Phosphorylation - drug effects</topic><topic>Proto-Oncogene Proteins c-akt - metabolism</topic><topic>Proto-Oncogene Proteins c-bcl-2 - metabolism</topic><topic>pumps</topic><topic>Rats</topic><topic>Rats, Wistar</topic><topic>Receptors, Adrenergic, beta - metabolism</topic><topic>Signal Transduction - drug effects</topic><topic>streptozotocin</topic><topic>β-receptor antagonist</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sharma, Vijay</creatorcontrib><creatorcontrib>Sharma, Arpeeta</creatorcontrib><creatorcontrib>Saran, Varun</creatorcontrib><creatorcontrib>Bernatchez, Pascal N.</creatorcontrib><creatorcontrib>Allard, Michael F.</creatorcontrib><creatorcontrib>McNeill, John H.</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>European journal of pharmacology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sharma, Vijay</au><au>Sharma, Arpeeta</au><au>Saran, Varun</au><au>Bernatchez, Pascal N.</au><au>Allard, Michael F.</au><au>McNeill, John H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>β-receptor antagonist treatment prevents activation of cell death signaling in the diabetic heart independent of its metabolic actions</atitle><jtitle>European journal of pharmacology</jtitle><addtitle>Eur J Pharmacol</addtitle><date>2011-04-25</date><risdate>2011</risdate><volume>657</volume><issue>1</issue><spage>117</spage><epage>125</epage><pages>117-125</pages><issn>0014-2999</issn><eissn>1879-0712</eissn><coden>EJPHAZ</coden><abstract>We have previously shown that metoprolol improves function in the diabetic heart, associated with inhibition of fatty acid oxidation and a shift towards protein kinase B signaling. The aim of this study was to determine the relative importance of these metabolic and signaling effects to the prevention of cellular damage. Diabetes was induced in male Wistar rats by a single IV injection of 60 mg/kg streptozotocin, and treated groups received 15 mg/kg/day metoprolol delivered subcutaneously by osmotic pumps. Echocardiography was performed 6 weeks after streptozotocin injection, and the hearts immediately excised for histological and biochemical measurements of lipotoxicity, apoptosis, signaling and caveolin/caspase interactions. Metoprolol improved stroke volume and cardiac output, associated with attenuation of TUNEL staining and a more modest attenuation of caspase-3; however, the positive TUNEL staining was not associated with an increase in apoptosis or cell regeneration markers. Metoprolol inhibited CPT-1 without affecting CD36 translocation, associated with increased accumulation of triglycerides and long chain acyl CoA in the cytoplasm, and no effect on oxidative stress. Metoprolol induced a shift from protein kinase A to protein kinase B-mediated signaling, associated with a shift in the phosphorylation patterns of BCl-2 and Bad which favored BCl-2 action. Metoprolol also increased the interaction of activated caspase-3 with caveolins 1 and 3 outside caveolae. The actions of metoprolol on fatty acid oxidation do not prevent lipotoxicity; its beneficial effect is more likely to be due to pro-survival signaling and sequestration of activated caspase-3 by caveolins.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><pmid>21296063</pmid><doi>10.1016/j.ejphar.2011.01.044</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0014-2999
ispartof European journal of pharmacology, 2011-04, Vol.657 (1), p.117-125
issn 0014-2999
1879-0712
language eng
recordid cdi_proquest_miscellaneous_1562670720
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects acyl coenzyme A
Adrenergic beta-Antagonists - pharmacology
Animals
antagonists
apoptosis
bcl-Associated Death Protein - metabolism
Biological and medical sciences
cAMP-dependent protein kinase
Cardiac metabolism
cardiac output
Cardiology. Vascular system
Caspase 3 - metabolism
caspase-3
Caveolins - metabolism
Cell death
Cell Death - drug effects
Cyclic AMP-Dependent Protein Kinases - metabolism
cytoplasm
Diabetes
Diabetes Mellitus, Experimental - metabolism
Diabetes Mellitus, Experimental - pathology
Diabetes. Impaired glucose tolerance
echocardiography
Endocrine pancreas. Apud cells (diseases)
Endocrinopathies
Etiopathogenesis. Screening. Investigations. Target tissue resistance
fatty acids
Fatty Acids - metabolism
Fatty Acids - toxicity
Fibrosis - metabolism
Heart
Heart - drug effects
Heart failure
Heart failure, cardiogenic pulmonary edema, cardiac enlargement
intravenous injection
long chain triacylglycerols
Male
Medical sciences
Metoprolol - pharmacology
Myocardium - metabolism
Myocardium - pathology
oxidation
Oxidation-Reduction - drug effects
Oxidative stress
Oxidative Stress - drug effects
pharmacology
Pharmacology. Drug treatments
phosphorylation
Phosphorylation - drug effects
Proto-Oncogene Proteins c-akt - metabolism
Proto-Oncogene Proteins c-bcl-2 - metabolism
pumps
Rats
Rats, Wistar
Receptors, Adrenergic, beta - metabolism
Signal Transduction - drug effects
streptozotocin
β-receptor antagonist
title β-receptor antagonist treatment prevents activation of cell death signaling in the diabetic heart independent of its metabolic actions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T19%3A50%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=%CE%B2-receptor%20antagonist%20treatment%20prevents%20activation%20of%20cell%20death%20signaling%20in%20the%20diabetic%20heart%20independent%20of%20its%20metabolic%20actions&rft.jtitle=European%20journal%20of%20pharmacology&rft.au=Sharma,%20Vijay&rft.date=2011-04-25&rft.volume=657&rft.issue=1&rft.spage=117&rft.epage=125&rft.pages=117-125&rft.issn=0014-2999&rft.eissn=1879-0712&rft.coden=EJPHAZ&rft_id=info:doi/10.1016/j.ejphar.2011.01.044&rft_dat=%3Cproquest_cross%3E1562670720%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1562670720&rft_id=info:pmid/21296063&rft_els_id=S0014299911001026&rfr_iscdi=true