Linagliptin alleviates hepatic steatosis and inflammation in a mouse model of non-alcoholic steatohepatitis
Non-alcoholic steatohepatitis (NASH) is a primary cause of cirrhosis and hepatocellular carcinoma. Dipeptidyl peptidase (DPP)-4 inhibitors are established therapies for type 2 diabetes and although DPP-4 inhibitors can reduce hepatic steatosis, their impact on local inflammation and fibrosis in NASH...
Gespeichert in:
Veröffentlicht in: | Medical molecular morphology 2014-09, Vol.47 (3), p.137-149 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 149 |
---|---|
container_issue | 3 |
container_start_page | 137 |
container_title | Medical molecular morphology |
container_volume | 47 |
creator | Klein, Thomas Fujii, Masato Sandel, Jan Shibazaki, Yuichiro Wakamatsu, Kyoko Mark, Michael Yoneyama, Hiroyuki |
description | Non-alcoholic steatohepatitis (NASH) is a primary cause of cirrhosis and hepatocellular carcinoma. Dipeptidyl peptidase (DPP)-4 inhibitors are established therapies for type 2 diabetes and although DPP-4 inhibitors can reduce hepatic steatosis, their impact on local inflammation and fibrosis in NASH remains unknown. Using two different experimental treatment regimens (4- and 2-week treatments) in streptozotocin-treated neonatal mice on a high-fat diet, we show that the DPP-4 inhibitor linagliptin (10 and 30 mg/kg) significantly attenuated the NAS score from 4.9 ± 0.6 to 3.7 ± 0.4 and 3.6 ± 0.3, respectively, in the 4-week study. In the 2-week study, linagliptin 10 mg/kg significantly reduced NAS score from 4.1 ± 0.4 to 2.4 ± 0.4. Telmisartan was used as a positive control in both studies and lowered NAS score to 1.9 ± 0.7 and 1.4 ± 0.3, respectively. Due to streptozotocin treatment, elevated glucose levels were unchanged by either drug treatment. Further, linagliptin 10 mg/kg significantly reduced mRNA levels of SOCS-3 (from 1.68 ± 0.2 to 0.83 ± 0.08), IFN-γ (from 4.0 ± 0.5 to 2.3 ± 0.3), and TNF-α (from 5.7 ± 0.5 to 2.13 ± 0.3). The latter observation was confirmed by immunohistochemistry of TNF-α in liver specimens. In addition, using microautoradiography, we showed that the distribution of radiolabeled linagliptin was heterogeneous with the highest density associated with interlobular bile ducts and portal tracts (acini). In conclusion, these studies confirm that linagliptin has high exposure in hepatic tissue and has both anti-inflammatory and anti-steatotic activity in NASH. |
doi_str_mv | 10.1007/s00795-013-0053-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1561972342</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1561972342</sourcerecordid><originalsourceid>FETCH-LOGICAL-c574t-38a887ddde14ffb7289a154c4c203a58a071ad89108fed2612022563ed01f2443</originalsourceid><addsrcrecordid>eNp9kD9PwzAQxS0EoqXwAViQR5bA2bETZ0QV_6RKLDBbbuy0Lo4d4gSJb4-rlI4sdyfde093P4SuCdwRgPI-plLxDEieAfA8q07QnIgCMsKq6vQ4C5ihixh3AHlZUH6OZpQBExzYHH2urFcbZ7vBeqycM99WDSbirenUYGscB6OGEG3EymtsfeNU26ZN8HhvwG0Yo0lVG4dDg33wmXJ12AZ3NE9Rg42X6KxRLpqrQ1-gj6fH9-VLtnp7fl0-rLKal2zIcqGEKLXWhrCmWZdUVIpwVrOaQq64UFASpUVFQDRG04JQoJQXudFAGspYvkC3U27Xh6_RxEG2NtbGOeVNOlcSXpCqpDmjSUomad2HGHvTyK63rep_JAG5ZywnxjIxlnvGskqem0P8uG6NPjr-oCYBnQQxrfzG9HIXxt6nl_9J_QXjXIg2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1561972342</pqid></control><display><type>article</type><title>Linagliptin alleviates hepatic steatosis and inflammation in a mouse model of non-alcoholic steatohepatitis</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Klein, Thomas ; Fujii, Masato ; Sandel, Jan ; Shibazaki, Yuichiro ; Wakamatsu, Kyoko ; Mark, Michael ; Yoneyama, Hiroyuki</creator><creatorcontrib>Klein, Thomas ; Fujii, Masato ; Sandel, Jan ; Shibazaki, Yuichiro ; Wakamatsu, Kyoko ; Mark, Michael ; Yoneyama, Hiroyuki</creatorcontrib><description>Non-alcoholic steatohepatitis (NASH) is a primary cause of cirrhosis and hepatocellular carcinoma. Dipeptidyl peptidase (DPP)-4 inhibitors are established therapies for type 2 diabetes and although DPP-4 inhibitors can reduce hepatic steatosis, their impact on local inflammation and fibrosis in NASH remains unknown. Using two different experimental treatment regimens (4- and 2-week treatments) in streptozotocin-treated neonatal mice on a high-fat diet, we show that the DPP-4 inhibitor linagliptin (10 and 30 mg/kg) significantly attenuated the NAS score from 4.9 ± 0.6 to 3.7 ± 0.4 and 3.6 ± 0.3, respectively, in the 4-week study. In the 2-week study, linagliptin 10 mg/kg significantly reduced NAS score from 4.1 ± 0.4 to 2.4 ± 0.4. Telmisartan was used as a positive control in both studies and lowered NAS score to 1.9 ± 0.7 and 1.4 ± 0.3, respectively. Due to streptozotocin treatment, elevated glucose levels were unchanged by either drug treatment. Further, linagliptin 10 mg/kg significantly reduced mRNA levels of SOCS-3 (from 1.68 ± 0.2 to 0.83 ± 0.08), IFN-γ (from 4.0 ± 0.5 to 2.3 ± 0.3), and TNF-α (from 5.7 ± 0.5 to 2.13 ± 0.3). The latter observation was confirmed by immunohistochemistry of TNF-α in liver specimens. In addition, using microautoradiography, we showed that the distribution of radiolabeled linagliptin was heterogeneous with the highest density associated with interlobular bile ducts and portal tracts (acini). In conclusion, these studies confirm that linagliptin has high exposure in hepatic tissue and has both anti-inflammatory and anti-steatotic activity in NASH.</description><identifier>ISSN: 1860-1480</identifier><identifier>EISSN: 1860-1499</identifier><identifier>DOI: 10.1007/s00795-013-0053-9</identifier><identifier>PMID: 24048504</identifier><language>eng</language><publisher>Tokyo: Springer Japan</publisher><subject>Anatomy ; Animals ; Animals, Newborn ; Autoradiography ; Diet, High-Fat ; Dipeptidyl Peptidase 4 - metabolism ; Dipeptidyl-Peptidase IV Inhibitors - pharmacology ; Dipeptidyl-Peptidase IV Inhibitors - therapeutic use ; DNA Primers - genetics ; Immunohistochemistry ; Interferon-gamma - metabolism ; Linagliptin ; Medicine ; Medicine & Public Health ; Mice ; Molecular Medicine ; Non-alcoholic Fatty Liver Disease - drug therapy ; Original Paper ; Pathology ; Purines - pharmacology ; Purines - therapeutic use ; Quinazolines - pharmacology ; Quinazolines - therapeutic use ; Real-Time Polymerase Chain Reaction ; RNA, Messenger - metabolism ; Streptozocin ; Suppressor of Cytokine Signaling 3 Protein ; Suppressor of Cytokine Signaling Proteins - metabolism ; Time Factors ; Tumor Necrosis Factor-alpha - metabolism</subject><ispartof>Medical molecular morphology, 2014-09, Vol.47 (3), p.137-149</ispartof><rights>The Japanese Society for Clinical Molecular Morphology 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c574t-38a887ddde14ffb7289a154c4c203a58a071ad89108fed2612022563ed01f2443</citedby><cites>FETCH-LOGICAL-c574t-38a887ddde14ffb7289a154c4c203a58a071ad89108fed2612022563ed01f2443</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00795-013-0053-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00795-013-0053-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24048504$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Klein, Thomas</creatorcontrib><creatorcontrib>Fujii, Masato</creatorcontrib><creatorcontrib>Sandel, Jan</creatorcontrib><creatorcontrib>Shibazaki, Yuichiro</creatorcontrib><creatorcontrib>Wakamatsu, Kyoko</creatorcontrib><creatorcontrib>Mark, Michael</creatorcontrib><creatorcontrib>Yoneyama, Hiroyuki</creatorcontrib><title>Linagliptin alleviates hepatic steatosis and inflammation in a mouse model of non-alcoholic steatohepatitis</title><title>Medical molecular morphology</title><addtitle>Med Mol Morphol</addtitle><addtitle>Med Mol Morphol</addtitle><description>Non-alcoholic steatohepatitis (NASH) is a primary cause of cirrhosis and hepatocellular carcinoma. Dipeptidyl peptidase (DPP)-4 inhibitors are established therapies for type 2 diabetes and although DPP-4 inhibitors can reduce hepatic steatosis, their impact on local inflammation and fibrosis in NASH remains unknown. Using two different experimental treatment regimens (4- and 2-week treatments) in streptozotocin-treated neonatal mice on a high-fat diet, we show that the DPP-4 inhibitor linagliptin (10 and 30 mg/kg) significantly attenuated the NAS score from 4.9 ± 0.6 to 3.7 ± 0.4 and 3.6 ± 0.3, respectively, in the 4-week study. In the 2-week study, linagliptin 10 mg/kg significantly reduced NAS score from 4.1 ± 0.4 to 2.4 ± 0.4. Telmisartan was used as a positive control in both studies and lowered NAS score to 1.9 ± 0.7 and 1.4 ± 0.3, respectively. Due to streptozotocin treatment, elevated glucose levels were unchanged by either drug treatment. Further, linagliptin 10 mg/kg significantly reduced mRNA levels of SOCS-3 (from 1.68 ± 0.2 to 0.83 ± 0.08), IFN-γ (from 4.0 ± 0.5 to 2.3 ± 0.3), and TNF-α (from 5.7 ± 0.5 to 2.13 ± 0.3). The latter observation was confirmed by immunohistochemistry of TNF-α in liver specimens. In addition, using microautoradiography, we showed that the distribution of radiolabeled linagliptin was heterogeneous with the highest density associated with interlobular bile ducts and portal tracts (acini). In conclusion, these studies confirm that linagliptin has high exposure in hepatic tissue and has both anti-inflammatory and anti-steatotic activity in NASH.</description><subject>Anatomy</subject><subject>Animals</subject><subject>Animals, Newborn</subject><subject>Autoradiography</subject><subject>Diet, High-Fat</subject><subject>Dipeptidyl Peptidase 4 - metabolism</subject><subject>Dipeptidyl-Peptidase IV Inhibitors - pharmacology</subject><subject>Dipeptidyl-Peptidase IV Inhibitors - therapeutic use</subject><subject>DNA Primers - genetics</subject><subject>Immunohistochemistry</subject><subject>Interferon-gamma - metabolism</subject><subject>Linagliptin</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Mice</subject><subject>Molecular Medicine</subject><subject>Non-alcoholic Fatty Liver Disease - drug therapy</subject><subject>Original Paper</subject><subject>Pathology</subject><subject>Purines - pharmacology</subject><subject>Purines - therapeutic use</subject><subject>Quinazolines - pharmacology</subject><subject>Quinazolines - therapeutic use</subject><subject>Real-Time Polymerase Chain Reaction</subject><subject>RNA, Messenger - metabolism</subject><subject>Streptozocin</subject><subject>Suppressor of Cytokine Signaling 3 Protein</subject><subject>Suppressor of Cytokine Signaling Proteins - metabolism</subject><subject>Time Factors</subject><subject>Tumor Necrosis Factor-alpha - metabolism</subject><issn>1860-1480</issn><issn>1860-1499</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kD9PwzAQxS0EoqXwAViQR5bA2bETZ0QV_6RKLDBbbuy0Lo4d4gSJb4-rlI4sdyfde093P4SuCdwRgPI-plLxDEieAfA8q07QnIgCMsKq6vQ4C5ihixh3AHlZUH6OZpQBExzYHH2urFcbZ7vBeqycM99WDSbirenUYGscB6OGEG3EymtsfeNU26ZN8HhvwG0Yo0lVG4dDg33wmXJ12AZ3NE9Rg42X6KxRLpqrQ1-gj6fH9-VLtnp7fl0-rLKal2zIcqGEKLXWhrCmWZdUVIpwVrOaQq64UFASpUVFQDRG04JQoJQXudFAGspYvkC3U27Xh6_RxEG2NtbGOeVNOlcSXpCqpDmjSUomad2HGHvTyK63rep_JAG5ZywnxjIxlnvGskqem0P8uG6NPjr-oCYBnQQxrfzG9HIXxt6nl_9J_QXjXIg2</recordid><startdate>20140901</startdate><enddate>20140901</enddate><creator>Klein, Thomas</creator><creator>Fujii, Masato</creator><creator>Sandel, Jan</creator><creator>Shibazaki, Yuichiro</creator><creator>Wakamatsu, Kyoko</creator><creator>Mark, Michael</creator><creator>Yoneyama, Hiroyuki</creator><general>Springer Japan</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20140901</creationdate><title>Linagliptin alleviates hepatic steatosis and inflammation in a mouse model of non-alcoholic steatohepatitis</title><author>Klein, Thomas ; Fujii, Masato ; Sandel, Jan ; Shibazaki, Yuichiro ; Wakamatsu, Kyoko ; Mark, Michael ; Yoneyama, Hiroyuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c574t-38a887ddde14ffb7289a154c4c203a58a071ad89108fed2612022563ed01f2443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Anatomy</topic><topic>Animals</topic><topic>Animals, Newborn</topic><topic>Autoradiography</topic><topic>Diet, High-Fat</topic><topic>Dipeptidyl Peptidase 4 - metabolism</topic><topic>Dipeptidyl-Peptidase IV Inhibitors - pharmacology</topic><topic>Dipeptidyl-Peptidase IV Inhibitors - therapeutic use</topic><topic>DNA Primers - genetics</topic><topic>Immunohistochemistry</topic><topic>Interferon-gamma - metabolism</topic><topic>Linagliptin</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Mice</topic><topic>Molecular Medicine</topic><topic>Non-alcoholic Fatty Liver Disease - drug therapy</topic><topic>Original Paper</topic><topic>Pathology</topic><topic>Purines - pharmacology</topic><topic>Purines - therapeutic use</topic><topic>Quinazolines - pharmacology</topic><topic>Quinazolines - therapeutic use</topic><topic>Real-Time Polymerase Chain Reaction</topic><topic>RNA, Messenger - metabolism</topic><topic>Streptozocin</topic><topic>Suppressor of Cytokine Signaling 3 Protein</topic><topic>Suppressor of Cytokine Signaling Proteins - metabolism</topic><topic>Time Factors</topic><topic>Tumor Necrosis Factor-alpha - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Klein, Thomas</creatorcontrib><creatorcontrib>Fujii, Masato</creatorcontrib><creatorcontrib>Sandel, Jan</creatorcontrib><creatorcontrib>Shibazaki, Yuichiro</creatorcontrib><creatorcontrib>Wakamatsu, Kyoko</creatorcontrib><creatorcontrib>Mark, Michael</creatorcontrib><creatorcontrib>Yoneyama, Hiroyuki</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Medical molecular morphology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Klein, Thomas</au><au>Fujii, Masato</au><au>Sandel, Jan</au><au>Shibazaki, Yuichiro</au><au>Wakamatsu, Kyoko</au><au>Mark, Michael</au><au>Yoneyama, Hiroyuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Linagliptin alleviates hepatic steatosis and inflammation in a mouse model of non-alcoholic steatohepatitis</atitle><jtitle>Medical molecular morphology</jtitle><stitle>Med Mol Morphol</stitle><addtitle>Med Mol Morphol</addtitle><date>2014-09-01</date><risdate>2014</risdate><volume>47</volume><issue>3</issue><spage>137</spage><epage>149</epage><pages>137-149</pages><issn>1860-1480</issn><eissn>1860-1499</eissn><abstract>Non-alcoholic steatohepatitis (NASH) is a primary cause of cirrhosis and hepatocellular carcinoma. Dipeptidyl peptidase (DPP)-4 inhibitors are established therapies for type 2 diabetes and although DPP-4 inhibitors can reduce hepatic steatosis, their impact on local inflammation and fibrosis in NASH remains unknown. Using two different experimental treatment regimens (4- and 2-week treatments) in streptozotocin-treated neonatal mice on a high-fat diet, we show that the DPP-4 inhibitor linagliptin (10 and 30 mg/kg) significantly attenuated the NAS score from 4.9 ± 0.6 to 3.7 ± 0.4 and 3.6 ± 0.3, respectively, in the 4-week study. In the 2-week study, linagliptin 10 mg/kg significantly reduced NAS score from 4.1 ± 0.4 to 2.4 ± 0.4. Telmisartan was used as a positive control in both studies and lowered NAS score to 1.9 ± 0.7 and 1.4 ± 0.3, respectively. Due to streptozotocin treatment, elevated glucose levels were unchanged by either drug treatment. Further, linagliptin 10 mg/kg significantly reduced mRNA levels of SOCS-3 (from 1.68 ± 0.2 to 0.83 ± 0.08), IFN-γ (from 4.0 ± 0.5 to 2.3 ± 0.3), and TNF-α (from 5.7 ± 0.5 to 2.13 ± 0.3). The latter observation was confirmed by immunohistochemistry of TNF-α in liver specimens. In addition, using microautoradiography, we showed that the distribution of radiolabeled linagliptin was heterogeneous with the highest density associated with interlobular bile ducts and portal tracts (acini). In conclusion, these studies confirm that linagliptin has high exposure in hepatic tissue and has both anti-inflammatory and anti-steatotic activity in NASH.</abstract><cop>Tokyo</cop><pub>Springer Japan</pub><pmid>24048504</pmid><doi>10.1007/s00795-013-0053-9</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1860-1480 |
ispartof | Medical molecular morphology, 2014-09, Vol.47 (3), p.137-149 |
issn | 1860-1480 1860-1499 |
language | eng |
recordid | cdi_proquest_miscellaneous_1561972342 |
source | MEDLINE; SpringerNature Journals |
subjects | Anatomy Animals Animals, Newborn Autoradiography Diet, High-Fat Dipeptidyl Peptidase 4 - metabolism Dipeptidyl-Peptidase IV Inhibitors - pharmacology Dipeptidyl-Peptidase IV Inhibitors - therapeutic use DNA Primers - genetics Immunohistochemistry Interferon-gamma - metabolism Linagliptin Medicine Medicine & Public Health Mice Molecular Medicine Non-alcoholic Fatty Liver Disease - drug therapy Original Paper Pathology Purines - pharmacology Purines - therapeutic use Quinazolines - pharmacology Quinazolines - therapeutic use Real-Time Polymerase Chain Reaction RNA, Messenger - metabolism Streptozocin Suppressor of Cytokine Signaling 3 Protein Suppressor of Cytokine Signaling Proteins - metabolism Time Factors Tumor Necrosis Factor-alpha - metabolism |
title | Linagliptin alleviates hepatic steatosis and inflammation in a mouse model of non-alcoholic steatohepatitis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T06%3A15%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Linagliptin%20alleviates%20hepatic%20steatosis%20and%20inflammation%20in%20a%20mouse%20model%20of%20non-alcoholic%20steatohepatitis&rft.jtitle=Medical%20molecular%20morphology&rft.au=Klein,%20Thomas&rft.date=2014-09-01&rft.volume=47&rft.issue=3&rft.spage=137&rft.epage=149&rft.pages=137-149&rft.issn=1860-1480&rft.eissn=1860-1499&rft_id=info:doi/10.1007/s00795-013-0053-9&rft_dat=%3Cproquest_cross%3E1561972342%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1561972342&rft_id=info:pmid/24048504&rfr_iscdi=true |