A toolbox of oligopeptide-modified polymers for tailored elastomers
Biomaterials are constructed from limited sets of building blocks but exhibit extraordinary and versatile properties, because hierarchical structure formation lets them employ identical supramolecular motifs for different purposes. Here we exert a similar degree of structural control in synthetic su...
Gespeichert in:
Veröffentlicht in: | Nature communications 2014-09, Vol.5 (1), p.4728-4728, Article 4728 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4728 |
---|---|
container_issue | 1 |
container_start_page | 4728 |
container_title | Nature communications |
container_volume | 5 |
creator | Croisier, Emmanuel Liang, Su Schweizer, Thomas Balog, Sandor Mionić, Marijana Snellings, Ruben Cugnoni, Joël Michaud, Véronique Frauenrath, Holger |
description | Biomaterials are constructed from limited sets of building blocks but exhibit extraordinary and versatile properties, because hierarchical structure formation lets them employ identical supramolecular motifs for different purposes. Here we exert a similar degree of structural control in synthetic supramolecular elastomers and thus tailor them for a broad range of thermomechanical properties. We show that oligopeptide-terminated polymers selectively self-assemble into small aggregates or nanofibrils, depending on the length of the oligopeptides. This process is self-sorting if differently long oligopeptides are combined so that different nanostructures coexist in bulk mixtures. Blends of polymers with oligopeptides matching in length furnish reinforced elastomers that exhibit shear moduli one order of magnitude higher than the parent polymers. By contrast, novel interpenetrating supramolecular networks that display excellent vibration damping properties are obtained from blends comprising non-matching oligopeptides or unmodified polymers. Hence, blends of oligopeptide-modified polymers constitute a toolbox for tailored elastomers with versatile properties.
Biological systems are capable of building diverse structures starting from a limited number of chemical building blocks. Here, the authors show that polymers terminated with oligopeptides display assembly behaviour dependent on peptide length, and blends allow tailoring of a variety of material properties. |
doi_str_mv | 10.1038/ncomms5728 |
format | Article |
fullrecord | <record><control><sourceid>proquest_C6C</sourceid><recordid>TN_cdi_proquest_miscellaneous_1561472523</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1561472523</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-786d73f7d7e25d5596107e130d5b0c01c39c33582e06a92ea47c6509795f35183</originalsourceid><addsrcrecordid>eNplkE1Lw0AQhhdRrNRe_AES8CJKdD-y2c2xFL-g4EXPId2dlJRNJu6mYP-9W1q16FxmeOfhneEl5ILRO0aFvu8Mtm2QiusjcsZpxlKmuDg-mEdkEsKKxhIF01l2SkZcskIzkZ2R2TQZEN0CPxOsE3TNEnvoh8ZC2qJt6gZs0qPbtOBDUqNPhqpx6KMKrgoDbvVzclJXLsBk38fk_fHhbfaczl-fXmbTeWqEVkOqdG6VqJVVwKWVssgZVcAEtXJBDWVGFEYIqTnQvCo4VJkyuaSFKmQtJNNiTK53vr3HjzWEoWybYMC5qgNch5LJnGWKSy4ievUHXeHad_G7LUWlkjqmNyY3O8p4DMFDXfa-aSu_KRktt-mWv-lG-HJvuV60YH_Q7ywjcLsDQlx1S_AHN__bfQG4CoLE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1560575810</pqid></control><display><type>article</type><title>A toolbox of oligopeptide-modified polymers for tailored elastomers</title><source>Springer Nature OA Free Journals</source><creator>Croisier, Emmanuel ; Liang, Su ; Schweizer, Thomas ; Balog, Sandor ; Mionić, Marijana ; Snellings, Ruben ; Cugnoni, Joël ; Michaud, Véronique ; Frauenrath, Holger</creator><creatorcontrib>Croisier, Emmanuel ; Liang, Su ; Schweizer, Thomas ; Balog, Sandor ; Mionić, Marijana ; Snellings, Ruben ; Cugnoni, Joël ; Michaud, Véronique ; Frauenrath, Holger</creatorcontrib><description>Biomaterials are constructed from limited sets of building blocks but exhibit extraordinary and versatile properties, because hierarchical structure formation lets them employ identical supramolecular motifs for different purposes. Here we exert a similar degree of structural control in synthetic supramolecular elastomers and thus tailor them for a broad range of thermomechanical properties. We show that oligopeptide-terminated polymers selectively self-assemble into small aggregates or nanofibrils, depending on the length of the oligopeptides. This process is self-sorting if differently long oligopeptides are combined so that different nanostructures coexist in bulk mixtures. Blends of polymers with oligopeptides matching in length furnish reinforced elastomers that exhibit shear moduli one order of magnitude higher than the parent polymers. By contrast, novel interpenetrating supramolecular networks that display excellent vibration damping properties are obtained from blends comprising non-matching oligopeptides or unmodified polymers. Hence, blends of oligopeptide-modified polymers constitute a toolbox for tailored elastomers with versatile properties.
Biological systems are capable of building diverse structures starting from a limited number of chemical building blocks. Here, the authors show that polymers terminated with oligopeptides display assembly behaviour dependent on peptide length, and blends allow tailoring of a variety of material properties.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/ncomms5728</identifier><identifier>PMID: 25198134</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>140/131 ; 639/301/54 ; 639/301/923/1028 ; Biocompatible Materials - chemistry ; Elastomers - chemistry ; Humanities and Social Sciences ; multidisciplinary ; Nanostructures - chemistry ; Oligopeptides - chemistry ; Polyenes - chemistry ; Polymers - chemistry ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Science ; Science (multidisciplinary)</subject><ispartof>Nature communications, 2014-09, Vol.5 (1), p.4728-4728, Article 4728</ispartof><rights>Springer Nature Limited 2014</rights><rights>Copyright Nature Publishing Group Sep 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-786d73f7d7e25d5596107e130d5b0c01c39c33582e06a92ea47c6509795f35183</citedby><cites>FETCH-LOGICAL-c387t-786d73f7d7e25d5596107e130d5b0c01c39c33582e06a92ea47c6509795f35183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/ncomms5728$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://doi.org/10.1038/ncomms5728$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41119,42188,51575</link.rule.ids><linktorsrc>$$Uhttps://doi.org/10.1038/ncomms5728$$EView_record_in_Springer_Nature$$FView_record_in_$$GSpringer_Nature</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25198134$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Croisier, Emmanuel</creatorcontrib><creatorcontrib>Liang, Su</creatorcontrib><creatorcontrib>Schweizer, Thomas</creatorcontrib><creatorcontrib>Balog, Sandor</creatorcontrib><creatorcontrib>Mionić, Marijana</creatorcontrib><creatorcontrib>Snellings, Ruben</creatorcontrib><creatorcontrib>Cugnoni, Joël</creatorcontrib><creatorcontrib>Michaud, Véronique</creatorcontrib><creatorcontrib>Frauenrath, Holger</creatorcontrib><title>A toolbox of oligopeptide-modified polymers for tailored elastomers</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Biomaterials are constructed from limited sets of building blocks but exhibit extraordinary and versatile properties, because hierarchical structure formation lets them employ identical supramolecular motifs for different purposes. Here we exert a similar degree of structural control in synthetic supramolecular elastomers and thus tailor them for a broad range of thermomechanical properties. We show that oligopeptide-terminated polymers selectively self-assemble into small aggregates or nanofibrils, depending on the length of the oligopeptides. This process is self-sorting if differently long oligopeptides are combined so that different nanostructures coexist in bulk mixtures. Blends of polymers with oligopeptides matching in length furnish reinforced elastomers that exhibit shear moduli one order of magnitude higher than the parent polymers. By contrast, novel interpenetrating supramolecular networks that display excellent vibration damping properties are obtained from blends comprising non-matching oligopeptides or unmodified polymers. Hence, blends of oligopeptide-modified polymers constitute a toolbox for tailored elastomers with versatile properties.
Biological systems are capable of building diverse structures starting from a limited number of chemical building blocks. Here, the authors show that polymers terminated with oligopeptides display assembly behaviour dependent on peptide length, and blends allow tailoring of a variety of material properties.</description><subject>140/131</subject><subject>639/301/54</subject><subject>639/301/923/1028</subject><subject>Biocompatible Materials - chemistry</subject><subject>Elastomers - chemistry</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Nanostructures - chemistry</subject><subject>Oligopeptides - chemistry</subject><subject>Polyenes - chemistry</subject><subject>Polymers - chemistry</subject><subject>Protein Structure, Secondary</subject><subject>Protein Structure, Tertiary</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNplkE1Lw0AQhhdRrNRe_AES8CJKdD-y2c2xFL-g4EXPId2dlJRNJu6mYP-9W1q16FxmeOfhneEl5ILRO0aFvu8Mtm2QiusjcsZpxlKmuDg-mEdkEsKKxhIF01l2SkZcskIzkZ2R2TQZEN0CPxOsE3TNEnvoh8ZC2qJt6gZs0qPbtOBDUqNPhqpx6KMKrgoDbvVzclJXLsBk38fk_fHhbfaczl-fXmbTeWqEVkOqdG6VqJVVwKWVssgZVcAEtXJBDWVGFEYIqTnQvCo4VJkyuaSFKmQtJNNiTK53vr3HjzWEoWybYMC5qgNch5LJnGWKSy4ievUHXeHad_G7LUWlkjqmNyY3O8p4DMFDXfa-aSu_KRktt-mWv-lG-HJvuV60YH_Q7ywjcLsDQlx1S_AHN__bfQG4CoLE</recordid><startdate>20140908</startdate><enddate>20140908</enddate><creator>Croisier, Emmanuel</creator><creator>Liang, Su</creator><creator>Schweizer, Thomas</creator><creator>Balog, Sandor</creator><creator>Mionić, Marijana</creator><creator>Snellings, Ruben</creator><creator>Cugnoni, Joël</creator><creator>Michaud, Véronique</creator><creator>Frauenrath, Holger</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>20140908</creationdate><title>A toolbox of oligopeptide-modified polymers for tailored elastomers</title><author>Croisier, Emmanuel ; Liang, Su ; Schweizer, Thomas ; Balog, Sandor ; Mionić, Marijana ; Snellings, Ruben ; Cugnoni, Joël ; Michaud, Véronique ; Frauenrath, Holger</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-786d73f7d7e25d5596107e130d5b0c01c39c33582e06a92ea47c6509795f35183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>140/131</topic><topic>639/301/54</topic><topic>639/301/923/1028</topic><topic>Biocompatible Materials - chemistry</topic><topic>Elastomers - chemistry</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Nanostructures - chemistry</topic><topic>Oligopeptides - chemistry</topic><topic>Polyenes - chemistry</topic><topic>Polymers - chemistry</topic><topic>Protein Structure, Secondary</topic><topic>Protein Structure, Tertiary</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Croisier, Emmanuel</creatorcontrib><creatorcontrib>Liang, Su</creatorcontrib><creatorcontrib>Schweizer, Thomas</creatorcontrib><creatorcontrib>Balog, Sandor</creatorcontrib><creatorcontrib>Mionić, Marijana</creatorcontrib><creatorcontrib>Snellings, Ruben</creatorcontrib><creatorcontrib>Cugnoni, Joël</creatorcontrib><creatorcontrib>Michaud, Véronique</creatorcontrib><creatorcontrib>Frauenrath, Holger</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Croisier, Emmanuel</au><au>Liang, Su</au><au>Schweizer, Thomas</au><au>Balog, Sandor</au><au>Mionić, Marijana</au><au>Snellings, Ruben</au><au>Cugnoni, Joël</au><au>Michaud, Véronique</au><au>Frauenrath, Holger</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A toolbox of oligopeptide-modified polymers for tailored elastomers</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2014-09-08</date><risdate>2014</risdate><volume>5</volume><issue>1</issue><spage>4728</spage><epage>4728</epage><pages>4728-4728</pages><artnum>4728</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Biomaterials are constructed from limited sets of building blocks but exhibit extraordinary and versatile properties, because hierarchical structure formation lets them employ identical supramolecular motifs for different purposes. Here we exert a similar degree of structural control in synthetic supramolecular elastomers and thus tailor them for a broad range of thermomechanical properties. We show that oligopeptide-terminated polymers selectively self-assemble into small aggregates or nanofibrils, depending on the length of the oligopeptides. This process is self-sorting if differently long oligopeptides are combined so that different nanostructures coexist in bulk mixtures. Blends of polymers with oligopeptides matching in length furnish reinforced elastomers that exhibit shear moduli one order of magnitude higher than the parent polymers. By contrast, novel interpenetrating supramolecular networks that display excellent vibration damping properties are obtained from blends comprising non-matching oligopeptides or unmodified polymers. Hence, blends of oligopeptide-modified polymers constitute a toolbox for tailored elastomers with versatile properties.
Biological systems are capable of building diverse structures starting from a limited number of chemical building blocks. Here, the authors show that polymers terminated with oligopeptides display assembly behaviour dependent on peptide length, and blends allow tailoring of a variety of material properties.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>25198134</pmid><doi>10.1038/ncomms5728</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2014-09, Vol.5 (1), p.4728-4728, Article 4728 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_proquest_miscellaneous_1561472523 |
source | Springer Nature OA Free Journals |
subjects | 140/131 639/301/54 639/301/923/1028 Biocompatible Materials - chemistry Elastomers - chemistry Humanities and Social Sciences multidisciplinary Nanostructures - chemistry Oligopeptides - chemistry Polyenes - chemistry Polymers - chemistry Protein Structure, Secondary Protein Structure, Tertiary Science Science (multidisciplinary) |
title | A toolbox of oligopeptide-modified polymers for tailored elastomers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T06%3A23%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_C6C&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20toolbox%20of%20oligopeptide-modified%20polymers%20for%20tailored%20elastomers&rft.jtitle=Nature%20communications&rft.au=Croisier,%20Emmanuel&rft.date=2014-09-08&rft.volume=5&rft.issue=1&rft.spage=4728&rft.epage=4728&rft.pages=4728-4728&rft.artnum=4728&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/ncomms5728&rft_dat=%3Cproquest_C6C%3E1561472523%3C/proquest_C6C%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1560575810&rft_id=info:pmid/25198134&rfr_iscdi=true |