Experimentally proven liquid-liquid critical point of dilute glycerol-water solution at 150 K
The experimental and theoretical studies of supercooled liquid water strongly suggest that the two liquid waters and their liquid-liquid critical point (LLCP) exist at low temperature. However, the decisive experimental evidence of the LLCP has not been obtained because of the rapid crystallization...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2014-09, Vol.141 (9), p.094505-094505 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 094505 |
---|---|
container_issue | 9 |
container_start_page | 094505 |
container_title | The Journal of chemical physics |
container_volume | 141 |
creator | Suzuki, Yoshiharu Mishima, Osamu |
description | The experimental and theoretical studies of supercooled liquid water strongly suggest that the two liquid waters and their liquid-liquid critical point (LLCP) exist at low temperature. However, the decisive experimental evidence of the LLCP has not been obtained because of the rapid crystallization of liquid water in the "no-man's land." Here, we observed experimentally the pressure-induced polyamorphic transition in the dilute glycerol-water solution which relates to the water polyamorphism. We examined the effect of the glycerol concentration on the liquid-liquid transition, and found its LLCP around 0.12-0.15 mole fraction, 0.03-0.05 GPa, and ~150 K. A 150 K was above, or around, the recently recognized glass transition temperatures of amorphous ices, and the crystallization did not occur, indicating that the direct observation of LLCP is feasible. The low-temperature LLCP has implication to the argument of the relation between the interaction potential of water molecule and the polyamorphic phase diagram. |
doi_str_mv | 10.1063/1.4894416 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1561036138</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1561036138</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-36df60b6a97d37fe63f07b99ba7759a54dd1c62289a597e9d63576b07ffd496c3</originalsourceid><addsrcrecordid>eNpdkE1LAzEURYMotlYX_gEJuNHF1GQy89IspdQPLLjRpQyZSUZS0smYZNT-e1NaXbi6j8fhcjkInVMypQTYDZ0WM1EUFA7QmJKZyDgIcojGhOQ0E0BghE5CWBFCKM-LYzTKSyoKxsUYvS2-e-3NWndRWrvBvXefusPWfAxGZbvAjTfRNNLi3pkuYtdiZewQNX63m0Z7Z7MvGbXHwaWvcR2WEdOS4KdTdNRKG_TZPifo9W7xMn_Ils_3j_PbZdakETFjoFogNUjBFeOtBtYSXgtRS85LIctCKdpAns_SLbgWCljJoSa8bVUhoGETdLXrTfM_Bh1itTah0dbKTrshVLQEShhQNkvo5T905QbfpXVVTnNIIORb6npHNd6F4HVb9UmS9JuKkmrrvKLV3nliL_aNQ73W6o_8lcx-AG4UesQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2126561628</pqid></control><display><type>article</type><title>Experimentally proven liquid-liquid critical point of dilute glycerol-water solution at 150 K</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Suzuki, Yoshiharu ; Mishima, Osamu</creator><creatorcontrib>Suzuki, Yoshiharu ; Mishima, Osamu</creatorcontrib><description>The experimental and theoretical studies of supercooled liquid water strongly suggest that the two liquid waters and their liquid-liquid critical point (LLCP) exist at low temperature. However, the decisive experimental evidence of the LLCP has not been obtained because of the rapid crystallization of liquid water in the "no-man's land." Here, we observed experimentally the pressure-induced polyamorphic transition in the dilute glycerol-water solution which relates to the water polyamorphism. We examined the effect of the glycerol concentration on the liquid-liquid transition, and found its LLCP around 0.12-0.15 mole fraction, 0.03-0.05 GPa, and ~150 K. A 150 K was above, or around, the recently recognized glass transition temperatures of amorphous ices, and the crystallization did not occur, indicating that the direct observation of LLCP is feasible. The low-temperature LLCP has implication to the argument of the relation between the interaction potential of water molecule and the polyamorphic phase diagram.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.4894416</identifier><identifier>PMID: 25194379</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Critical point ; Crystallization ; Dilution ; Glass transition temperature ; Glycerol ; Glycerol-Water ; Phase diagrams ; Water ; Water chemistry</subject><ispartof>The Journal of chemical physics, 2014-09, Vol.141 (9), p.094505-094505</ispartof><rights>2014 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-36df60b6a97d37fe63f07b99ba7759a54dd1c62289a597e9d63576b07ffd496c3</citedby><cites>FETCH-LOGICAL-c379t-36df60b6a97d37fe63f07b99ba7759a54dd1c62289a597e9d63576b07ffd496c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25194379$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Suzuki, Yoshiharu</creatorcontrib><creatorcontrib>Mishima, Osamu</creatorcontrib><title>Experimentally proven liquid-liquid critical point of dilute glycerol-water solution at 150 K</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>The experimental and theoretical studies of supercooled liquid water strongly suggest that the two liquid waters and their liquid-liquid critical point (LLCP) exist at low temperature. However, the decisive experimental evidence of the LLCP has not been obtained because of the rapid crystallization of liquid water in the "no-man's land." Here, we observed experimentally the pressure-induced polyamorphic transition in the dilute glycerol-water solution which relates to the water polyamorphism. We examined the effect of the glycerol concentration on the liquid-liquid transition, and found its LLCP around 0.12-0.15 mole fraction, 0.03-0.05 GPa, and ~150 K. A 150 K was above, or around, the recently recognized glass transition temperatures of amorphous ices, and the crystallization did not occur, indicating that the direct observation of LLCP is feasible. The low-temperature LLCP has implication to the argument of the relation between the interaction potential of water molecule and the polyamorphic phase diagram.</description><subject>Critical point</subject><subject>Crystallization</subject><subject>Dilution</subject><subject>Glass transition temperature</subject><subject>Glycerol</subject><subject>Glycerol-Water</subject><subject>Phase diagrams</subject><subject>Water</subject><subject>Water chemistry</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpdkE1LAzEURYMotlYX_gEJuNHF1GQy89IspdQPLLjRpQyZSUZS0smYZNT-e1NaXbi6j8fhcjkInVMypQTYDZ0WM1EUFA7QmJKZyDgIcojGhOQ0E0BghE5CWBFCKM-LYzTKSyoKxsUYvS2-e-3NWndRWrvBvXefusPWfAxGZbvAjTfRNNLi3pkuYtdiZewQNX63m0Z7Z7MvGbXHwaWvcR2WEdOS4KdTdNRKG_TZPifo9W7xMn_Ils_3j_PbZdakETFjoFogNUjBFeOtBtYSXgtRS85LIctCKdpAns_SLbgWCljJoSa8bVUhoGETdLXrTfM_Bh1itTah0dbKTrshVLQEShhQNkvo5T905QbfpXVVTnNIIORb6npHNd6F4HVb9UmS9JuKkmrrvKLV3nliL_aNQ73W6o_8lcx-AG4UesQ</recordid><startdate>20140907</startdate><enddate>20140907</enddate><creator>Suzuki, Yoshiharu</creator><creator>Mishima, Osamu</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20140907</creationdate><title>Experimentally proven liquid-liquid critical point of dilute glycerol-water solution at 150 K</title><author>Suzuki, Yoshiharu ; Mishima, Osamu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-36df60b6a97d37fe63f07b99ba7759a54dd1c62289a597e9d63576b07ffd496c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Critical point</topic><topic>Crystallization</topic><topic>Dilution</topic><topic>Glass transition temperature</topic><topic>Glycerol</topic><topic>Glycerol-Water</topic><topic>Phase diagrams</topic><topic>Water</topic><topic>Water chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Suzuki, Yoshiharu</creatorcontrib><creatorcontrib>Mishima, Osamu</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Suzuki, Yoshiharu</au><au>Mishima, Osamu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimentally proven liquid-liquid critical point of dilute glycerol-water solution at 150 K</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2014-09-07</date><risdate>2014</risdate><volume>141</volume><issue>9</issue><spage>094505</spage><epage>094505</epage><pages>094505-094505</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><abstract>The experimental and theoretical studies of supercooled liquid water strongly suggest that the two liquid waters and their liquid-liquid critical point (LLCP) exist at low temperature. However, the decisive experimental evidence of the LLCP has not been obtained because of the rapid crystallization of liquid water in the "no-man's land." Here, we observed experimentally the pressure-induced polyamorphic transition in the dilute glycerol-water solution which relates to the water polyamorphism. We examined the effect of the glycerol concentration on the liquid-liquid transition, and found its LLCP around 0.12-0.15 mole fraction, 0.03-0.05 GPa, and ~150 K. A 150 K was above, or around, the recently recognized glass transition temperatures of amorphous ices, and the crystallization did not occur, indicating that the direct observation of LLCP is feasible. The low-temperature LLCP has implication to the argument of the relation between the interaction potential of water molecule and the polyamorphic phase diagram.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>25194379</pmid><doi>10.1063/1.4894416</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2014-09, Vol.141 (9), p.094505-094505 |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_proquest_miscellaneous_1561036138 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Critical point Crystallization Dilution Glass transition temperature Glycerol Glycerol-Water Phase diagrams Water Water chemistry |
title | Experimentally proven liquid-liquid critical point of dilute glycerol-water solution at 150 K |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T11%3A29%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimentally%20proven%20liquid-liquid%20critical%20point%20of%20dilute%20glycerol-water%20solution%20at%20150%20K&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Suzuki,%20Yoshiharu&rft.date=2014-09-07&rft.volume=141&rft.issue=9&rft.spage=094505&rft.epage=094505&rft.pages=094505-094505&rft.issn=0021-9606&rft.eissn=1089-7690&rft_id=info:doi/10.1063/1.4894416&rft_dat=%3Cproquest_cross%3E1561036138%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2126561628&rft_id=info:pmid/25194379&rfr_iscdi=true |